Slicely countably determined Banach spaces
HTML articles powered by AMS MathViewer
- by Antonio Avilés, Vladimir Kadets, Miguel Martín, Javier Merí and Varvara Shepelska
- Trans. Amer. Math. Soc. 362 (2010), 4871-4900
- DOI: https://doi.org/10.1090/S0002-9947-10-05038-5
- Published electronically: April 8, 2010
- PDF | Request permission
Abstract:
We introduce the class of slicely countably determined Banach spaces which contains in particular all spaces with the Radon-Nikodým property and all spaces without copies of $\ell _1$. We present many examples and several properties of this class. We give some applications to Banach spaces with the Daugavet and the alternative Daugavet properties, lush spaces and Banach spaces with numerical index $1$. In particular, we show that the dual of a real infinite-dimensional Banach space with the alternative Daugavet property contains $\ell _1$ and that operators which do not fix copies of $\ell _1$ on a space with the alternative Daugavet property satisfy the alternative Daugavet equation.References
- Fernando Albiac and Nigel J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. MR 2192298
- S. Argyros, E. Odell, and H. Rosenthal, On certain convex subsets of $c_0$, Functional analysis (Austin, TX, 1986–87) Lecture Notes in Math., vol. 1332, Springer, Berlin, 1988, pp. 80–111. MR 967090, DOI 10.1007/BFb0081613
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- J. Bourgain, La propriété de Radon-Nikodym, Publ. Math. de l’Univ. Pierre et Marie Curie 36, 1979.
- J. Bourgain, Dentability and finite-dimensional decompositions, Studia Math. 67 (1980), no. 2, 135–148. MR 583294, DOI 10.4064/sm-67-2-135-148
- Richard D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin, 1983. MR 704815, DOI 10.1007/BFb0069321
- Kostyantyn Boyko, Vladimir Kadets, Miguel Martín, and Javier Merí, Properties of lush spaces and applications to Banach spaces with numerical index 1, Studia Math. 190 (2009), no. 2, 117–133. MR 2461290, DOI 10.4064/sm190-2-2
- Kostyantyn Boyko, Vladimir Kadets, Miguel Martín, and Dirk Werner, Numerical index of Banach spaces and duality, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 93–102. MR 2296393, DOI 10.1017/S0305004106009650
- Jesús M. F. Castillo and Manuel González, Three-space problems in Banach space theory, Lecture Notes in Mathematics, vol. 1667, Springer-Verlag, Berlin, 1997. MR 1482801, DOI 10.1007/BFb0112511
- Gustave Choquet, Lectures on analysis. Vol. II: Representation theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Edited by J. Marsden, T. Lance and S. Gelbart. MR 0250012
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- D. van Dulst, Characterizations of Banach spaces not containing $l{^1}$, CWI Tract, vol. 59, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1002733
- J. Duncan, C. M. McGregor, J. D. Pryce, and A. J. White, The numerical index of a normed space, J. London Math. Soc. (2) 2 (1970), 481–488. MR 264371, DOI 10.1112/jlms/2.Part_{3}.481
- N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637, DOI 10.1090/memo/0378
- Yevgen Ivakhno, Vladimir Kadets, and Dirk Werner, The Daugavet property for spaces of Lipschitz functions, Math. Scand. 101 (2007), no. 2, 261–279. MR 2379289, DOI 10.7146/math.scand.a-15044
- V. Kadets, M. Martín, J. Merí, and R. Payá, Convexity and smoothness of Banach spaces with numerical index one, Illinois J. Math. 53 (2009), 163–182.
- Vladimir Kadets, Miguel Martín, Javier Merí, and Varvara Shepelska, Lushness, numerical index one and duality, J. Math. Anal. Appl. 357 (2009), no. 1, 15–24. MR 2526802, DOI 10.1016/j.jmaa.2009.03.055
- Vladimir Kadets, Miguel Martín, and Rafael Payá, Recent progress and open questions on the numerical index of Banach spaces, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), no. 1-2, 155–182 (English, with English and Spanish summaries). MR 2267407
- Vladimir M. Kadets, Roman V. Shvidkoy, Gleb G. Sirotkin, and Dirk Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), no. 2, 855–873. MR 1621757, DOI 10.1090/S0002-9947-99-02377-6
- Vladimir M. Kadets, Roman V. Shvidkoy, and Dirk Werner, Narrow operators and rich subspaces of Banach spaces with the Daugavet property, Studia Math. 147 (2001), no. 3, 269–298. MR 1853772, DOI 10.4064/sm147-3-5
- Vladimir Kadets and Dirk Werner, A Banach space with the Schur and the Daugavet property, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1765–1773. MR 2051139, DOI 10.1090/S0002-9939-03-07278-2
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- Ginés López, Miguel Martín, and Rafael Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), no. 2, 207–212. MR 1664125, DOI 10.1112/S002460939800513X
- Miguel Martín, The alternative Daugavet property of $C^*$-algebras and $\textrm {JB^*}$-triples, Math. Nachr. 281 (2008), no. 3, 376–385. MR 2392119, DOI 10.1002/mana.200510608
- Miguel Martín and Timur Oikhberg, An alternative Daugavet property, J. Math. Anal. Appl. 294 (2004), no. 1, 158–180. MR 2059797, DOI 10.1016/j.jmaa.2004.02.006
- Haskell Rosenthal, On the structure of nondentable closed bounded convex sets, Adv. in Math. 70 (1988), no. 1, 1–58. MR 947756, DOI 10.1016/0001-8708(88)90050-3
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- W. Schachermayer, An example concerning strong regularity and points of continuity in Banach spaces, Functional analysis (Austin, TX, 1986–87) Lecture Notes in Math., vol. 1332, Springer, Berlin, 1988, pp. 64–79. MR 967089, DOI 10.1007/BFb0081612
- R. V. Shvydkoy, Geometric aspects of the Daugavet property, J. Funct. Anal. 176 (2000), no. 2, 198–212. MR 1784413, DOI 10.1006/jfan.2000.3626
- Stevo Todorčević, Compact subsets of the first Baire class, J. Amer. Math. Soc. 12 (1999), no. 4, 1179–1212. MR 1685782, DOI 10.1090/S0894-0347-99-00312-4
- Lutz Weis, On the surjective (injective) envelope of strictly (co-) singular operators, Studia Math. 54 (1975/76), no. 3, 285–290. MR 399908, DOI 10.4064/sm-54-3-285-290
Bibliographic Information
- Antonio Avilés
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
- Email: avileslo@um.es
- Vladimir Kadets
- Affiliation: Department of Mechanics and Mathematics, Kharkov National University, pl. Svobody 4, 61077 Kharkov, Ukraine
- MR Author ID: 202226
- ORCID: 0000-0002-5606-2679
- Email: vova1kadets@yahoo.com
- Miguel Martín
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- MR Author ID: 643000
- ORCID: 0000-0003-4502-798X
- Email: mmartins@ugr.es
- Javier Merí
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- MR Author ID: 739081
- Email: jmeri@ugr.es
- Varvara Shepelska
- Affiliation: Department of Mechanics and Mathematics, Kharkov National University, pl. Svobody 4, 61077 Kharkov, Ukraine
- Email: shepelskaya@yahoo.com
- Received by editor(s): September 15, 2008
- Received by editor(s) in revised form: March 2, 2009
- Published electronically: April 8, 2010
- Additional Notes: The first-named author was supported by the Marie Curie Intra-European Fellowship MCEIF-CT2006-038768 (EU) and the Spanish research project MTM2005-08379 (MEC and FEDER). The second-named author was supported by Junta de Andalucía and FEDER grant P06-FQM-01438. The third- and fourth-named authors were partially supported by the Spanish MEC and FEDER project no. MTM2006-04837 and Junta de Andalucía and FEDER grants FQM-185 and P06-FQM-01438. The fifth-named author was partially supported by the N. I. Akhiezer Foundation
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 4871-4900
- MSC (2010): Primary 46B20; Secondary 46B03, 46B04, 46B22, 47A12
- DOI: https://doi.org/10.1090/S0002-9947-10-05038-5
- MathSciNet review: 2645054