## Counting primitive points of bounded height

HTML articles powered by AMS MathViewer

- by Martin Widmer PDF
- Trans. Amer. Math. Soc.
**362**(2010), 4793-4829 Request permission

## Abstract:

Let $k$ be a number field and $K$ a finite extension of $k$. We count points of bounded height in projective space over the field $K$ generating the extension $K/k$. As the height gets large we derive asymptotic estimates with a particularly good error term respecting the extension $K/k$. In a future paper we will use these results to get asymptotic estimates for the number of points of fixed degree over $k$. We also introduce the notion of an adelic Lipschitz height generalizing that of Masser and Vaaler. This will lead to further applications involving points of fixed degree on linear varieties and algebraic numbers of fixed degree satisfying certain subfield conditions.## References

- Enrico Bombieri and Walter Gubler,
*Heights in Diophantine geometry*, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR**2216774**, DOI 10.1017/CBO9780511542879 - S. Bosch, U. Güntzer, and R. Remmert,
*Non-Archimedean analysis*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR**746961**, DOI 10.1007/978-3-642-52229-1 - J. W. S. Cassels,
*An introduction to the geometry of numbers*, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR**1434478** - Jordan S. Ellenberg and Akshay Venkatesh,
*The number of extensions of a number field with fixed degree and bounded discriminant*, Ann. of Math. (2)**163**(2006), no. 2, 723–741. MR**2199231**, DOI 10.4007/annals.2006.163.723 - X. Gao,
*On Northcott’s Theorem*, Ph.D. Thesis, University of Colorado (1995). - Serge Lang,
*Fundamentals of Diophantine geometry*, Springer-Verlag, New York, 1983. MR**715605**, DOI 10.1007/978-1-4757-1810-2 - Serge Lang,
*Algebraic number theory*, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR**1282723**, DOI 10.1007/978-1-4612-0853-2 - A. Leutbecher,
*Zahlentheorie*, Springer, 1996. - K. Mahler,
*On the zeros of the derivative of a polynomial*, Proc. Roy. Soc. London Ser. A**264**(1961), 145–154. MR**133437**, DOI 10.1098/rspa.1961.0189 - David Masser and Jeffrey D. Vaaler,
*Counting algebraic numbers with large height. I*, Diophantine approximation, Dev. Math., vol. 16, SpringerWienNewYork, Vienna, 2008, pp. 237–243. MR**2487698**, DOI 10.1007/978-3-211-74280-8_{1}4 - David Masser and Jeffrey D. Vaaler,
*Counting algebraic numbers with large height. II*, Trans. Amer. Math. Soc.**359**(2007), no. 1, 427–445. MR**2247898**, DOI 10.1090/S0002-9947-06-04115-8 - D. G. Northcott,
*An inequality in the theory of arithmetic on algebraic varieties*, Proc. Cambridge Philos. Soc.**45**(1949), 502–509. MR**33094**, DOI 10.1017/s0305004100025202 - Damien Roy and Jeffrey Lin Thunder,
*A note on Siegel’s lemma over number fields*, Monatsh. Math.**120**(1995), no. 3-4, 307–318. MR**1363143**, DOI 10.1007/BF01294863 - Stephen Hoel Schanuel,
*Heights in number fields*, Bull. Soc. Math. France**107**(1979), no. 4, 433–449 (English, with French summary). MR**557080**, DOI 10.24033/bsmf.1905 - Wolfgang M. Schmidt,
*On heights of algebraic subspaces and diophantine approximations*, Ann. of Math. (2)**85**(1967), 430–472. MR**213301**, DOI 10.2307/1970352 - Wolfgang M. Schmidt,
*Northcott’s theorem on heights. I. A general estimate*, Monatsh. Math.**115**(1993), no. 1-2, 169–181. MR**1223249**, DOI 10.1007/BF01311215 - Wolfgang M. Schmidt,
*Northcott’s theorem on heights. II. The quadratic case*, Acta Arith.**70**(1995), no. 4, 343–375. MR**1330740**, DOI 10.4064/aa-70-4-343-375 - Jeffrey Lin Thunder,
*The number of solutions of bounded height to a system of linear equations*, J. Number Theory**43**(1993), no. 2, 228–250. MR**1207503**, DOI 10.1006/jnth.1993.1021 - Jeffrey Lin Thunder,
*Remarks on adelic geometry of numbers*, Number theory for the millennium, III (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 253–259. MR**1956280** - M. Widmer,
*Asymptotically counting points of bounded height*, Ph.D. Thesis, Universität Basel (2007). - —,
*Counting points of fixed degree and bounded height*, to appear in Acta Arithmetica (2009). - —,
*Counting points of fixed degree and bounded height on linear varieties*, submitted (2009). - —,
*On number fields with nontrivial subfields*, preprint (2009).

## Additional Information

**Martin Widmer**- Affiliation: Mathematisches Institut, Universität Basel, Rheinsprung 21, 4051 Basel, Switzerland
- Address at time of publication: Department of Mathematics, University of Texas at Austin, 1 University Station C1200, Austin, Texas 78712
- Email: widmer@math.utexas.edu
- Received by editor(s): November 25, 2008
- Published electronically: April 28, 2010
- Additional Notes: The author was supported by NSF Grant #118647
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**362**(2010), 4793-4829 - MSC (2010): Primary 11G35; Secondary 11D75, 11G50, 14G25
- DOI: https://doi.org/10.1090/S0002-9947-10-05173-1
- MathSciNet review: 2645051