A Hilbert–Mumford criterion for polystability in Kaehler geometry
HTML articles powered by AMS MathViewer
- by I. Mundet i Riera
- Trans. Amer. Math. Soc. 362 (2010), 5169-5187
- DOI: https://doi.org/10.1090/S0002-9947-2010-04831-7
- Published electronically: May 19, 2010
- PDF | Request permission
Abstract:
Consider a Hamiltonian action of a compact Lie group $K$ on a Kaehler manifold $X$ with moment map $\mu :X\to \mathfrak k^*$. Assume that the action of $K$ extends to a holomorphic action of the complexification $G$ of $K$. We characterize which $G$-orbits in $X$ intersect $\mu ^{-1}(0)$ in terms of the maximal weights $\lim _{t\to \infty }\langle \mu (e^{\mathbf {i} ts}\cdot x),s\rangle$, where $s\in \mathfrak k$. We do not impose any a priori restriction on the stabilizer of $x$. Under some mild restrictions on the action $K\circlearrowright X$, we view the maximal weights as defining a collection of maps: for each $x\in X$, \[ \lambda _x:\partial _{\infty }(K\backslash G)\to \mathbb {R}\cup \{\infty \},\] where $\partial _{\infty }(K\backslash G)$ is the boundary at infinity of the symmetric space $K\backslash G$. We prove that $G\cdot x\cap \mu ^{-1}(0)\neq \emptyset$ if: (1) $\lambda _x$ is everywhere nonnegative, (2) any boundary point $y$ such that $\lambda _x(y)=0$ can be connected with a geodesic in $K\backslash G$ to another boundary point $y’$ satisfying $\lambda _x(y’)=0$. We also prove that the maximal weight functions are $G$-equivariant: for any $g\in G$ and any $y\in \partial _{\infty }(K\backslash G)$ we have $\lambda _{g\cdot x}(y)=\lambda _x(y\cdot g)$.References
- Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin. MR 1377265, DOI 10.1007/978-3-0348-9240-7
- Salomon Bochner and Deane Montgomery, Groups on analytic manifolds, Ann. of Math. (2) 48 (1947), 659–669. MR 22223, DOI 10.2307/1969133
- Laurent Bruasse and Andrei Teleman, Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 3, 1017–1053 (English, with English and French summaries). MR 2149409
- Claudio Procesi, Lie groups, Universitext, Springer, New York, 2007. An approach through invariants and representations. MR 2265844
- Patrick Eberlein, Structure of manifolds of nonpositive curvature, Global differential geometry and global analysis 1984 (Berlin, 1984) Lecture Notes in Math., vol. 1156, Springer, Berlin, 1985, pp. 86–153. MR 824064, DOI 10.1007/BFb0075088
- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI 10.1007/BF01398934
- Peter Heinzner and Alan Huckleberry, Kählerian structures on symplectic reductions, Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 225–253. MR 1760879
- George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989, DOI 10.2307/1971168
- M. Kapovich, B. Leeb, J. Millson, Convex functions on symmetric spaces, side lengths of polygons and stability inequalities for weighted configurations, arXiv:math/0311486.
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Ignasi Mundet i Riera, A Hitchin-Kobayashi correspondence for Kähler fibrations, J. Reine Angew. Math. 528 (2000), 41–80. MR 1801657, DOI 10.1515/crll.2000.092
- Gerald W. Schwarz, The topology of algebraic quotients, Topological methods in algebraic transformation groups (New Brunswick, NJ, 1988) Progr. Math., vol. 80, Birkhäuser Boston, Boston, MA, 1989, pp. 135–151. MR 1040861
- Reyer Sjamaar and Eugene Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2) 134 (1991), no. 2, 375–422. MR 1127479, DOI 10.2307/2944350
- Jean-Pierre Serre, Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d’après Armand Borel et André Weil), Séminaire Bourbaki, Vol. 2, Soc. Math. France, Paris, 1995, pp. Exp. No. 100, 447–454 (French). MR 1609256
- Reyer Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math. (2) 141 (1995), no. 1, 87–129. MR 1314032, DOI 10.2307/2118628
- Andrei Teleman, Symplectic stability, analytic stability in non-algebraic complex geometry, Internat. J. Math. 15 (2004), no. 2, 183–209. MR 2055369, DOI 10.1142/S0129167X04002223
Bibliographic Information
- I. Mundet i Riera
- Affiliation: Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
- MR Author ID: 642261
- Email: ignasi.mundet@ub.edu
- Received by editor(s): April 4, 2008
- Received by editor(s) in revised form: May 20, 2008
- Published electronically: May 19, 2010
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 5169-5187
- MSC (2010): Primary 53D20; Secondary 32M05
- DOI: https://doi.org/10.1090/S0002-9947-2010-04831-7
- MathSciNet review: 2657676