Elimination of ramification I: The generalized stability theorem
HTML articles powered by AMS MathViewer
- by Franz-Viktor Kuhlmann
- Trans. Amer. Math. Soc. 362 (2010), 5697-5727
- DOI: https://doi.org/10.1090/S0002-9947-2010-04973-6
- Published electronically: June 11, 2010
- PDF | Request permission
Abstract:
We prove a general version of the “Stability Theorem”: if $K$ is a valued field such that the ramification theoretical defect is trivial for all of its finite extensions, and if $F|K$ is a finitely generated (transcendental) extension of valued fields for which equality holds in the Abhyankar inequality, then the defect is also trivial for all finite extensions of $F$. This theorem is applied to eliminate ramification in such valued function fields. It has applications to local uniformization and to the model theory of valued fields in positive characteristic.References
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Otto Endler, Valuation theory, Universitext, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971). MR 0357379
- Helmut P. Epp, Eliminating wild ramification, Invent. Math. 19 (1973), 235–249. MR 321929, DOI 10.1007/BF01390208
- Laurent Gruson, Fibrés vectoriels sur un polydisque ultramétrique, Ann. Sci. École Norm. Sup. (4) 1 (1968), 45–89 (French). MR 229654
- B. Green, M. Matignon, and F. Pop, On valued function fields. I, Manuscripta Math. 65 (1989), no. 3, 357–376. MR 1015661, DOI 10.1007/BF01303043
- Hans Grauert and Reinhold Remmert, Über die Methode der diskret bewerteten Ringe in der nicht-archimedischen Analysis, Invent. Math. 2 (1966), 87–133 (German). MR 206039, DOI 10.1007/BF01404548
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Hagen Knaf and Franz-Viktor Kuhlmann, Abhyankar places admit local uniformization in any characteristic, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 833–846 (English, with English and French summaries). MR 2216832, DOI 10.1016/j.ansens.2005.09.001
- Hagen Knaf and Franz-Viktor Kuhlmann, Every place admits local uniformization in a finite extension of the function field, Adv. Math. 221 (2009), no. 2, 428–453. MR 2508927, DOI 10.1016/j.aim.2008.12.009
- Kuhlmann, F.-V.: Henselian function fields and tame fields, extended version of Ph.D. thesis, Heidelberg (1990).
- Kuhlmann, F.-V.: On local uniformization in arbitrary characteristic, The Fields Institute Preprint Series, Toronto (1997).
- Franz-Viktor Kuhlmann, Valuation theoretic and model theoretic aspects of local uniformization, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 381–456. MR 1748629
- Franz-Viktor Kuhlmann, A correction to: “Elimination of wild ramification” [Invent. Math. 19 (1973), 235–249; MR0321929 (48 #294)] by H. P. Epp, Invent. Math. 153 (2003), no. 3, 679–681. MR 2000472, DOI 10.1007/s00222-003-0297-4
- Franz-Viktor Kuhlmann, Additive polynomials and their role in the model theory of valued fields, Logic in Tehran, Lect. Notes Log., vol. 26, Assoc. Symbol. Logic, La Jolla, CA, 2006, pp. 160–203. MR 2262319
- Kuhlmann, F.-V.$\,$: A classification of Artin Schreier defect extensions and a characterization of defectless fields, submitted.
- Kuhlmann, F.-V.$\,$: The model theory of tame valued fields, in preparation.
- Kuhlmann, F.-V.$\,$: Elimination of Ramification II: Henselian Rationality, in preparation.
- F.-V. Kuhlmann and A. Prestel, On places of algebraic function fields, J. Reine Angew. Math. 353 (1984), 181–195. MR 765832, DOI 10.1515/crll.1984.353.181
- Franz-Viktor Kuhlmann, Matthias Pank, and Peter Roquette, Immediate and purely wild extensions of valued fields, Manuscripta Math. 55 (1986), no. 1, 39–67. MR 828410, DOI 10.1007/BF01168612
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Jack Ohm, The Henselian defect for valued function fields, Proc. Amer. Math. Soc. 107 (1989), no. 2, 299–308. MR 975654, DOI 10.1090/S0002-9939-1989-0975654-7
- Paulo Ribenboim, Théorie des valuations, Séminaire de Mathématiques Supérieures, No. 9 (Été, vol. 1964, Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). Deuxième édition multigraphiée. MR 0249425
- Seth Warner, Topological fields, North-Holland Mathematics Studies, vol. 157, North-Holland Publishing Co., Amsterdam, 1989. Notas de Matemática [Mathematical Notes], 126. MR 1002951
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- Franz-Viktor Kuhlmann
- Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6
- Email: fvk@math.usask.ca
- Received by editor(s): May 27, 2008
- Published electronically: June 11, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 5697-5727
- MSC (2010): Primary 12J10, 13A18; Secondary 12L12, 14B05
- DOI: https://doi.org/10.1090/S0002-9947-2010-04973-6
- MathSciNet review: 2661493