Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type
HTML articles powered by AMS MathViewer
- by Boyan Sirakov and Sérgio H. M. Soares
- Trans. Amer. Math. Soc. 362 (2010), 5729-5744
- DOI: https://doi.org/10.1090/S0002-9947-2010-04982-7
- Published electronically: May 27, 2010
- PDF | Request permission
Abstract:
We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.References
- Claudianor O. Alves and Sérgio H. M. Soares, Existence and concentration of positive solutions for a class of gradient systems, NoDEA Nonlinear Differential Equations Appl. 12 (2005), no. 4, 437–457. MR 2199383, DOI 10.1007/s00030-005-0021-8
- A. Ambrosetti, M. Badiale, and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997), no. 3, 285–300. MR 1486895, DOI 10.1007/s002050050067
- Vieri Benci and Paul H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241–273. MR 537061, DOI 10.1007/BF01389883
- Buljan H., Schwartz T., Segev M., Soljacic M., Christoudoulides D., Polychromatic partially spatially incoherent solitons in a non-instantaneous Kerr nonlinear medium, J. Opt. Soc. Amer. B. 21(2004) 397-404.
- Jaeyoung Byeon and Zhi-Qiang Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295–316. MR 1939214, DOI 10.1007/s00205-002-0225-6
- Jaeyoung Byeon and Zhi-Qiang Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations. II, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 207–219. MR 2010966, DOI 10.1007/s00526-002-0191-8
- Ph. Clément, D. G. de Figueiredo, and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), no. 5-6, 923–940. MR 1177298, DOI 10.1080/03605309208820869
- Ph. Clément and R. C. A. M. Van der Vorst, On a semilinear elliptic system, Differential Integral Equations 8 (1995), no. 6, 1317–1329. MR 1329843
- Christodoulides D., Eugenieva E., Coskun T., Mitchell M., Segev M., Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media, Phys. Rev. E 63(2001) 035601.
- E. N. Dancer and Shusen Yan, Interior and boundary peak solutions for a mixed boundary value problem, Indiana Univ. Math. J. 48 (1999), no. 4, 1177–1212. MR 1757072, DOI 10.1512/iumj.1999.48.1827
- Yanheng Ding and Fanghua Lin, Semiclassical states of Hamiltonian system of Schrödinger equations with subcritical and critical nonlinearities, J. Partial Differential Equations 19 (2006), no. 3, 232–255. MR 2252975
- Yanheng Ding and Fanghua Lin, Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. Partial Differential Equations 30 (2007), no. 2, 231–249. MR 2334939, DOI 10.1007/s00526-007-0091-z
- Yanheng Ding and Juncheng Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials, J. Funct. Anal. 251 (2007), no. 2, 546–572. MR 2356423, DOI 10.1016/j.jfa.2007.07.005
- Manuel del Pino and Patricio L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal. 149 (1997), no. 1, 245–265. MR 1471107, DOI 10.1006/jfan.1996.3085
- Djairo G. deFigueiredo, Nonlinear elliptic systems, An. Acad. Brasil. Ciênc. 72 (2000), no. 4, 453–469. MR 1800060, DOI 10.1590/S0001-37652000000400002
- Djairo G. De Figueiredo and Jianfu Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal. 33 (1998), no. 3, 211–234. MR 1617988, DOI 10.1016/S0362-546X(97)00548-8
- Andreas Floer and Alan Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397–408. MR 867665, DOI 10.1016/0022-1236(86)90096-0
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Changfeng Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations 21 (1996), no. 5-6, 787–820. MR 1391524, DOI 10.1080/03605309608821208
- Louis Jeanjean and Kazunaga Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations 21 (2004), no. 3, 287–318. MR 2094325, DOI 10.1007/s00526-003-0261-6
- Hulshof J., Van der Vorst R., Non-spreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69(1986) 397-408.
- Josephus Hulshof and Robertus van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), no. 1, 32–58. MR 1220982, DOI 10.1006/jfan.1993.1062
- YanYan Li, On a singularly perturbed elliptic equation, Adv. Differential Equations 2 (1997), no. 6, 955–980. MR 1606351
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- Tai-Chia Lin and Juncheng Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differential Equations 229 (2006), no. 2, 538–569. MR 2263567, DOI 10.1016/j.jde.2005.12.011
- J. D. Murray, Mathematical biology, Biomathematics, vol. 19, Springer-Verlag, Berlin, 1989. MR 1007836, DOI 10.1007/978-3-662-08539-4
- Wei-Ming Ni and Izumi Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247–281. MR 1219814, DOI 10.1215/S0012-7094-93-07004-4
- Yong-Geun Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys. 131 (1990), no. 2, 223–253. MR 1065671
- Alessio Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differential Equations 227 (2006), no. 1, 258–281. MR 2233961, DOI 10.1016/j.jde.2005.09.002
- Patrick J. Rabier and Charles A. Stuart, Fredholm and properness properties of quasilinear elliptic operators on $\mathbf R^N$, Math. Nachr. 231 (2001), 129–168. MR 1866199, DOI 10.1002/1522-2616(200111)231:1<129::AID-MANA129>3.3.CO;2-M
- Paul H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270–291. MR 1162728, DOI 10.1007/BF00946631
- Miguel Ramos and Sérgio H. M. Soares, On the concentration of solutions of singularly perturbed Hamiltonian systems in $\Bbb R^N$, Port. Math. (N.S.) 63 (2006), no. 2, 157–171. MR 2229874
- Miguel Ramos and Hugo Tavares, Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations 31 (2008), no. 1, 1–25. MR 2342612, DOI 10.1007/s00526-007-0103-z
- James Serrin and Henghui Zou, Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. Partial Differential Equations 23 (1998), no. 3-4, 577–599. MR 1620581, DOI 10.1080/03605309808821356
- James Serrin and Henghui Zou, Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations 9 (1996), no. 4, 635–653. MR 1401429
- Boyan Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $\mathbf R^N$, Adv. Differential Equations 5 (2000), no. 10-12, 1445–1464. MR 1785681
- Boyan Sirakov, Standing wave solutions of the nonlinear Schrödinger equation in $\Bbb R^N$, Ann. Mat. Pura Appl. (4) 181 (2002), no. 1, 73–83. MR 1895026, DOI 10.1007/s102310200029
- Shu-Ming Chang, Chang-Shou Lin, Tai-Chia Lin, and Wen-Wei Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Phys. D 196 (2004), no. 3-4, 341–361. MR 2090357, DOI 10.1016/j.physd.2004.06.002
- C. A. Stuart, An introduction to elliptic equations on $\textbf {R}^N$, Nonlinear functional analysis and applications to differential equations (Trieste, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 237–285. MR 1703533
- Juncheng Wei and Matthias Winter, Multi-peak solutions for a wide class of singular perturbation problems, J. London Math. Soc. (2) 59 (1999), no. 2, 585–606. MR 1709667, DOI 10.1112/S002461079900719X
Bibliographic Information
- Boyan Sirakov
- Affiliation: UFR SEGMI, Université Paris 10, 92001 Nanterre Cedex, France – and – CAMS, Ecole des Hautes Etudes en Sciences Sociales, 54 bd Raspail, 75270 Paris Cedex 06, France
- Email: sirakov@ehess.fr
- Sérgio H. M. Soares
- Affiliation: Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13560-970, São Carlos-SP, Brazil
- Email: monari@icmc.usp.br
- Received by editor(s): May 28, 2008
- Published electronically: May 27, 2010
- Additional Notes: The second author’s research was supported in part by FAPESP
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 5729-5744
- MSC (2010): Primary 35J47, 35J50, 35J10
- DOI: https://doi.org/10.1090/S0002-9947-2010-04982-7
- MathSciNet review: 2661494