Algebraic curves with a large non-tame automorphism group fixing no point
HTML articles powered by AMS MathViewer
- by M. Giulietti and G. Korchmáros
- Trans. Amer. Math. Soc. 362 (2010), 5983-6001
- DOI: https://doi.org/10.1090/S0002-9947-2010-05025-1
- Published electronically: June 10, 2010
- PDF | Request permission
Abstract:
Let $\mathbb {K}$ be an algebraically closed field of characteristic $p>0$, and let $\mathcal {X}$ be a curve over $\mathbb {K}$ of genus $g\ge 2$. Assume that the automorphism group $\mathrm {Aut}(\mathcal {X})$ of $\mathcal {X}$ over $\mathbb {K}$ fixes no point of $\mathcal {X}$. The following result is proven. If there is a point $P$ on $\mathcal {X}$ whose stabilizer in $\mathrm {Aut}(\mathcal {X})$ contains a $p$-subgroup of order greater than $gp/(p-1)$, then $\mathcal {X}$ is birationally equivalent over $\mathbb {K}$ to one of the irreducible plane curves (II), (III), (IV), (V) listed in the Introduction.References
- Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1993. Corrected reprint of the 1986 original. MR 1264416
- Emrah Çakçak and Ferruh Özbudak, Subfields of the function field of the Deligne-Lusztig curve of Ree type, Acta Arith. 115 (2004), no. 2, 133–180. MR 2099835, DOI 10.4064/aa115-2-3
- Peter Dembowski, Finite geometries, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Reprint of the 1968 original. MR 1434062
- M. Giulietti and G. Korchmáros, A new family of maximal curves over a finite field, arXiv: 0711.0445(math.AG), 2007.
- Massimo Giulietti and Gábor Korchmáros, A new family of maximal curves over a finite field, Math. Ann. 343 (2009), no. 1, 229–245. MR 2448446, DOI 10.1007/s00208-008-0270-z
- —, A note on cyclic semiregular subgroups of some $2$-transitive permutation groups, to appear in Discrete Math, see also arXiv: 0808.4109(math.GR), 2008.
- —, On Nakajima’s remark on Henn’s proof, arXiv: 0808.4108(math.AG), 2008.
- Massimo Giulietti, Gábor Korchmáros, and Fernando Torres, Quotient curves of the Suzuki curve, Acta Arith. 122 (2006), no. 3, 245–274. MR 2239917, DOI 10.4064/aa122-3-3
- Robert L. Griess Jr., Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc. 78 (1972), 68–71. MR 289635, DOI 10.1090/S0002-9904-1972-12855-6
- Robert L. Griess Jr., Schur multipliers of the known finite simple groups. II, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 279–282. MR 604594
- Johan P. Hansen and Jens Peter Pedersen, Automorphism groups of Ree type, Deligne-Lusztig curves and function fields, J. Reine Angew. Math. 440 (1993), 99–109. MR 1225959
- Hans-Wolfgang Henn, Funktionenkörper mit grosser Automorphismengruppe, J. Reine Angew. Math. 302 (1978), 96–115 (German). MR 511696, DOI 10.1515/crll.1978.302.96
- J. W. P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic curves over a finite field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2008. MR 2386879
- Alan R. Hoffer, On unitary collineation groups, J. Algebra 22 (1972), 211–218. MR 301624, DOI 10.1016/0021-8693(72)90141-X
- Daniel R. Hughes and Fred C. Piper, Projective planes, Graduate Texts in Mathematics, Vol. 6, Springer-Verlag, New York-Berlin, 1973. MR 0333959
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Bertram Huppert and Norman Blackburn, Finite groups. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 243, Springer-Verlag, Berlin-New York, 1982. MR 662826
- William M. Kantor, Michael E. O’Nan, and Gary M. Seitz, $2$-transitive groups in which the stabilizer of two points is cyclic, J. Algebra 21 (1972), 17–50. MR 357561, DOI 10.1016/0021-8693(72)90032-4
- Claus Lehr and Michel Matignon, Automorphism groups for $p$-cyclic covers of the affine line, Compos. Math. 141 (2005), no. 5, 1213–1237. MR 2157136, DOI 10.1112/S0010437X05001296
- Michel Matignon and Magali Rocher, Smooth curves having a large automorphism $p$-group in characteristic $p>0$, Algebra Number Theory 2 (2008), no. 8, 887–926. MR 2457356, DOI 10.2140/ant.2008.2.887
- Preda Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167–195. MR 2076124, DOI 10.1515/crll.2004.048
- Sh\B{o}ichi Nakajima, $p$-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 (1987), no. 2, 595–607. MR 902787, DOI 10.1090/S0002-9947-1987-0902787-6
- Magali Rocher, Large $p$-group actions with a $p$-elementary abelian derived group, J. Algebra 321 (2009), no. 2, 704–740. MR 2483289, DOI 10.1016/j.jalgebra.2008.09.030
- —, Large $p$-groups actions with $|G| /g^2 > 4/ (p^2-1)^2$, arXiv:0801.3494v1[math.A.G.], 2008.
- Peter Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z. 117 (1970), 157–163 (German). MR 279100, DOI 10.1007/BF01109838
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Henning Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe, Arch. Math. (Basel) 24 (1973), 527–544 (German). MR 337980, DOI 10.1007/BF01228251
- Henning Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkörpern, Arch. Math. (Basel) 24 (1973), 615–631. MR 404265, DOI 10.1007/BF01228261
- Karl-Otto Stöhr and José Felipe Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), no. 1, 1–19. MR 812443, DOI 10.1112/plms/s3-52.1.1
Bibliographic Information
- M. Giulietti
- Affiliation: Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia, Italy
- Email: giuliet@dipmat.unipg.it
- G. Korchmáros
- Affiliation: Dipartimento di Matematica, Università della Basilicata, Contrada Macchia Romana, 85100 Potenza, Italy
- Email: gabor.korchmaros@unibas.it
- Received by editor(s): August 29, 2008
- Received by editor(s) in revised form: February 19, 2009
- Published electronically: June 10, 2010
- Additional Notes: This research was supported by the Italian Ministry MURST, Strutture geometriche, combinatoria e loro applicazioni
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 5983-6001
- MSC (2010): Primary 14H37
- DOI: https://doi.org/10.1090/S0002-9947-2010-05025-1
- MathSciNet review: 2661505