On the law of the iterated logarithm for the discrepancy of lacunary sequences
HTML articles powered by AMS MathViewer
- by Christoph Aistleitner
- Trans. Amer. Math. Soc. 362 (2010), 5967-5982
- DOI: https://doi.org/10.1090/S0002-9947-2010-05026-3
- Published electronically: June 16, 2010
- PDF | Request permission
Abstract:
A classical result of Philipp (1975) states that for any sequence $(n_k)_{k \geq 1}$ of integers satisfying the Hadamard gap condition $n_{k+1}/n_k\ge q>1 \ (k=1, 2, \ldots )$, the discrepancy $D_N$ of the sequence $(n_k x)_{k\ge 1}$ mod 1 satisfies the law of the iterated logarithm (LIL), i.e. \[ 1/4 \leq \limsup _{N \to \infty } N D_N(n_k x) (N \log \log N)^{-1/2} \leq C_q \quad \mathrm {a.e.}\] The value of the $\limsup$ is a long-standing open problem. Recently Fukuyama explicitly calculated the value of the $\limsup$ for $n_k= \theta ^k$, $\theta >1$, not necessarily integer. We extend Fukuyama’s result to a large class of integer sequences $(n_k)$ characterized in terms of the number of solutions of a certain class of Diophantine equations and show that the value of the $\limsup$ is the same as in the Chung-Smirnov LIL for i.i.d. random variables.References
- Christoph Aistleitner and István Berkes, On the central limit theorem for $f(n_kx)$, Probab. Theory Related Fields 146 (2010), no. 1-2, 267–289. MR 2550364, DOI 10.1007/s00440-008-0190-6
- R. C. Baker, Metric number theory and the large sieve, J. London Math. Soc. (2) 24 (1981), no. 1, 34–40. MR 623668, DOI 10.1112/jlms/s2-24.1.34
- I. Berkes. On the asymptotic behaviour of $\sum f(n_k x)$. I. Main theorems, II. Applications. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34:319-345; 347-365, 1976.
- I. Berkes, On the central limit theorem for lacunary trigonometric series, Anal. Math. 4 (1978), no. 3, 159–180 (English, with Russian summary). MR 514757, DOI 10.1007/BF01908987
- I. Berkes and W. Philipp, An a.s. invariance principle for lacunary series $f(n_{k}x)$, Acta Math. Acad. Sci. Hungar. 34 (1979), no. 1-2, 141–155. MR 546729, DOI 10.1007/BF01902603
- István Berkes and Walter Philipp, The size of trigonometric and Walsh series and uniform distribution $\textrm {mod}\ 1$, J. London Math. Soc. (2) 50 (1994), no. 3, 454–464. MR 1299450, DOI 10.1112/jlms/50.3.454
- J. W. S. Cassels, Some metrical theorems of Diophantine approximation. III, Proc. Cambridge Philos. Soc. 46 (1950), 219–225. MR 36789, DOI 10.1017/s0305004100025688
- P. Erdös and J. F. Koksma, On the uniform distribution modulo $1$ of sequences $(f(n,\theta ))$, Nederl. Akad. Wetensch., Proc. 52 (1949), 851–854 = Indagationes Math. 11, 299–302 (1949). MR 32690
- K. Fukuyama, The law of the iterated logarithm for discrepancies of $\{\theta ^nx\}$, Acta Math. Hungar. 118 (2008), no. 1-2, 155–170. MR 2378547, DOI 10.1007/s10474-007-6201-8
- V. F. Gapoškin, Lacunary series and independent functions, Uspehi Mat. Nauk 21 (1966), no. 6 (132), 3–82 (Russian). MR 0206556
- V. F. Gapoškin, The central limit theorem for certain weakly dependent sequences, Teor. Verojatnost. i Primenen. 15 (1970), 666–684 (Russian). MR 0282394
- M. Kac, On the distribution of values of sums of the type $\sum f(2^k t)$, Ann. of Math. (2) 47 (1946), 33–49. MR 15548, DOI 10.2307/1969033
- M. Kac, Probability methods in some problems of analysis and number theory, Bull. Amer. Math. Soc. 55 (1949), 641–665. MR 31504, DOI 10.1090/S0002-9904-1949-09242-X
- H. Kesten, The discrepancy of random sequences $\{kx\}$, Acta Arith. 10 (1964/65), 183–213. MR 168546, DOI 10.4064/aa-10-2-183-213
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Walter Philipp, Limit theorems for lacunary series and uniform distribution $\textrm {mod}\ 1$, Acta Arith. 26 (1974/75), no. 3, 241–251. MR 379420, DOI 10.4064/aa-26-3-241-251
- Galen R. Shorack and Jon A. Wellner, Empirical processes with applications to statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. MR 838963
- Volker Strassen, Almost sure behavior of sums of independent random variables and martingales, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 315–343. MR 0214118
- Shigeru Takahashi, An asymptotic property of a gap sequence, Proc. Japan Acad. 38 (1962), 101–104. MR 140865
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
- A. Zygmund, Trigonometric series. Vol. I, II, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. With a foreword by Robert A. Fefferman. MR 1963498
Bibliographic Information
- Christoph Aistleitner
- Affiliation: Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
- Email: aistleitner@finanz.math.tugraz.at
- Received by editor(s): June 2, 2008
- Received by editor(s) in revised form: February 19, 2009
- Published electronically: June 16, 2010
- Additional Notes: This research was supported by the Austrian Research Foundation (FWF), Project S9603-N13.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 5967-5982
- MSC (2000): Primary 11K38, 42A55, 60F15
- DOI: https://doi.org/10.1090/S0002-9947-2010-05026-3
- MathSciNet review: 2661504