Normal automorphisms of relatively hyperbolic groups
HTML articles powered by AMS MathViewer
- by A. Minasyan and D. Osin
- Trans. Amer. Math. Soc. 362 (2010), 6079-6103
- DOI: https://doi.org/10.1090/S0002-9947-2010-05067-6
- Published electronically: June 16, 2010
- PDF | Request permission
Abstract:
An automorphism $\alpha$ of a group $G$ is normal if it fixes every normal subgroup of $G$ setwise. We give an algebraic description of normal automorphisms of relatively hyperbolic groups. In particular, we show that for any such group $G$, $Inn(G)$ has finite index in the subgroup $Aut_n(G)$ of normal automorphisms. If, in addition, $G$ is non-elementary and has no finite non-trivial normal subgroups, then $Aut_n(G)=Inn(G)$. As an application, we show that $Out(G)$ is residually finite for every finitely generated residually finite group $G$ with infinitely many ends.References
- R. B. J. T. Allenby, Goansu Kim, and C. Y. Tang, On the residual finiteness of $\textrm {Out}(\pi _1(M))$ of certain Seifert manifolds, Algebra Colloq. 10 (2003), no. 2, 121–126. MR 1980432
- R. B. J. T. Allenby, Goansu Kim, and C. Y. Tang, Residual finiteness of outer automorphism groups of certain pinched 1-relator groups, J. Algebra 246 (2001), no. 2, 849–858. MR 1872127, DOI 10.1006/jabr.2001.8987
- G. Arzhantseva, A. Minasyan, and D. Osin, The SQ-universality and residual properties of relatively hyperbolic groups, J. Algebra 315 (2007), no. 1, 165–177. MR 2344339, DOI 10.1016/j.jalgebra.2007.04.029
- Gilbert Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc. 38 (1963), 117–118. MR 146271, DOI 10.1112/jlms/s1-38.1.117
- Mladen Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), no. 1, 143–161. MR 932860, DOI 10.1215/S0012-7094-88-05607-4
- Oleg Bogopolski, Elena Kudryavtseva, and Heiner Zieschang, Simple curves on surfaces and an analog of a theorem of Magnus for surface groups, Math. Z. 247 (2004), no. 3, 595–609. MR 2114430, DOI 10.1007/s00209-003-0634-8
- B.H. Bowditch, Relatively hyperbolic groups, preprint, 1999.
- Inna Bumagin and Daniel T. Wise, Every group is an outer automorphism group of a finitely generated group, J. Pure Appl. Algebra 200 (2005), no. 1-2, 137–147. MR 2142354, DOI 10.1016/j.jpaa.2004.12.033
- E. A. Cherepanov, Normal automorphisms of free Burnside groups of large odd exponents, Internat. J. Algebra Comput. 16 (2006), no. 5, 839–847. MR 2274717, DOI 10.1142/S0218196706003268
- François Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003), 933–963. MR 2026551, DOI 10.2140/gt.2003.7.933
- Cornelia Druţu and Mark Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), no. 5, 959–1058. With an appendix by Denis Osin and Mark Sapir. MR 2153979, DOI 10.1016/j.top.2005.03.003
- Manfred Droste, Michèle Giraudet, and Rüdiger Göbel, All groups are outer automorphism groups of simple groups, J. London Math. Soc. (2) 64 (2001), no. 3, 565–575. MR 1865550, DOI 10.1112/S0024610701002484
- G. Endimioni, Pointwise inner automorphisms in a free nilpotent group, Q. J. Math. 53 (2002), no. 4, 397–402. MR 1949151, DOI 10.1093/qjmath/53.4.397
- B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810–840. MR 1650094, DOI 10.1007/s000390050075
- F. T. Farrell and L. E. Jones, The lower algebraic $K$-theory of virtually infinite cyclic groups, $K$-Theory 9 (1995), no. 1, 13–30. MR 1340838, DOI 10.1007/BF00965457
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Edna K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974/75), 160–164. MR 405423, DOI 10.1112/jlms/s2-9.1.160
- Daniel Groves and Jason Fox Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429. MR 2448064, DOI 10.1007/s11856-008-1070-6
- Daniel Groves and Jason Fox Manning, Fillings, finite generation and direct limits of relatively hyperbolic groups, Groups Geom. Dyn. 1 (2007), no. 3, 329–342. MR 2314049, DOI 10.4171/GGD/16
- Vincent Guirardel, Limit groups and groups acting freely on $\Bbb R^n$-trees, Geom. Topol. 8 (2004), 1427–1470. MR 2119301, DOI 10.2140/gt.2004.8.1427
- Vincent Guirardel and Gilbert Levitt, The outer space of a free product, Proc. Lond. Math. Soc. (3) 94 (2007), no. 3, 695–714. MR 2325317, DOI 10.1112/plms/pdl026
- C. Hrushka, Relative hyperbolicity and relative quasiconvexity for countable groups, preprint. arXiv:0801.4596.
- G. Christopher Hruska and Bruce Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005), 1501–1538. With an appendix by the authors and Mohamad Hindawi. MR 2175151, DOI 10.2140/gt.2005.9.1501
- Olga Kharlampovich and Alexei Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006), no. 2, 451–552. MR 2293770, DOI 10.1016/j.jalgebra.2006.03.033
- Alexander Lubotzky, Normal automorphisms of free groups, J. Algebra 63 (1980), no. 2, 494–498. MR 570726, DOI 10.1016/0021-8693(80)90086-1
- V. Metaftsis, M. Sykiotis, On the residual finiteness of outer automorphisms of relatively hyperbolic groups, preprint. arXiv:math/0608685v2.
- Ashot Minasyan, Groups with finitely many conjugacy classes and their automorphisms, Comment. Math. Helv. 84 (2009), no. 2, 259–296. MR 2495795, DOI 10.4171/CMH/162
- Ashot Minasyan, On residualizing homomorphisms preserving quasiconvexity, Comm. Algebra 33 (2005), no. 7, 2423–2463. MR 2153233, DOI 10.1081/AGB-200058383
- M. V. Neshchadim, Free products of groups that do not have outer normal automorphisms, Algebra i Logika 35 (1996), no. 5, 562–566, 625 (Russian, with Russian summary); English transl., Algebra and Logic 35 (1996), no. 5, 316–318. MR 1444437, DOI 10.1007/BF02367356
- Viatcheslav N. Obraztsov, Embedding into groups with well-described lattices of subgroups, Bull. Austral. Math. Soc. 54 (1996), no. 2, 221–240. MR 1411532, DOI 10.1017/S0004972700017688
- Denis V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (2006), no. 1, 99–118. MR 2217644, DOI 10.1142/S0218196706002901
- Denis V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007), no. 2, 295–326. MR 2270456, DOI 10.1007/s00222-006-0012-3
- Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100. MR 2182268, DOI 10.1090/memo/0843
- Frédéric Paulin, Outer automorphisms of hyperbolic groups and small actions on $\textbf {R}$-trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331–343. MR 1105339, DOI 10.1007/978-1-4612-3142-4_{1}2
- D.Y. Rebbechi, Algorithmic properties of relatively hyperbolic groups, Ph.D. thesis. arXiv: math/0302245.
- V. N. Remeslennikov, Finite approximability of groups with respect to conjugacy, Sibirsk. Mat. Ž. 12 (1971), 1085–1099 (Russian). MR 0294469
- V. A. Roman′kov, Normal automorphisms of discrete groups, Sibirsk. Mat. Zh. 24 (1983), no. 4, 138–149 (Russian). MR 713591
- Chih-han Sah, Automorphisms of finite groups, J. Algebra 10 (1968), 47–68. MR 229713, DOI 10.1016/0021-8693(68)90104-X
- Jean-Pierre Serre, Arbres, amalgames, $\textrm {SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass. MR 0476875
- Z. Sela, Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal. 16 (2006), no. 3, 707–730. MR 2238945, DOI 10.1007/s00039-006-0565-8
- John Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969. MR 0415622
- John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR 228573, DOI 10.2307/1970577
- Pekka Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157–187. MR 1313451
- Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41–89. MR 2039323, DOI 10.1515/crll.2004.007
- V. Yedynak, Multielement order separability in free products of groups, Comm. in Algebra, to appear.
Bibliographic Information
- A. Minasyan
- Affiliation: School of Mathematics, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom.
- Email: aminasyan@gmail.com
- D. Osin
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 649248
- Email: denis.osin@gmail.com
- Received by editor(s): September 30, 2008
- Received by editor(s) in revised form: March 25, 2009, and March 31, 2009
- Published electronically: June 16, 2010
- Additional Notes: The first author was supported by the Swiss National Science Foundation grant PP002-116899.
The second author was supported by the NSF grant DMS-0605093 and by the RFBR grant 05-01-00895. - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 6079-6103
- MSC (2010): Primary 20F65, 20F67, 20E26
- DOI: https://doi.org/10.1090/S0002-9947-2010-05067-6
- MathSciNet review: 2661509
Dedicated: Dedicated to Professor A.L. Shmelkin on the occasion of his 70th birthday.