Dirichlet regularity and degenerate diffusion
HTML articles powered by AMS MathViewer
- by Wolfgang Arendt and Michal Chovanec
- Trans. Amer. Math. Soc. 362 (2010), 5861-5878
- DOI: https://doi.org/10.1090/S0002-9947-2010-05077-9
- Published electronically: June 10, 2010
- PDF | Request permission
Abstract:
Let $\Omega \subset \mathbb {R}^N$ be an open and bounded set and let $m\colon \Omega \rightarrow (0,\infty )$ be measurable and locally bounded. We study a natural realization of the operator $m \triangle$ in $C_0(\Omega ):=\left \lbrace u\in C(\overline {\Omega }):\;u_{\vert \partial \Omega }=0\right \rbrace$. If $\Omega$ is Dirichlet regular, then the operator generates a positive contraction semigroup on $C_0(\Omega )$ whenever $\frac {1}{m}\in L^p_{\operatorname {loc}}(\Omega )$ for some $p>\frac {N}{2}$. If $m(x)$ does not go fast enough to $0$ as $x\rightarrow \partial \Omega$, then Dirichlet regularity is necessary. However, if $\vert m(x)\vert \leq c\cdot \operatorname {dist}(x,\partial \Omega )^2$, then we show that $m \triangle _0$ generates a semigroup on $C_0(\Omega )$ without any regularity assumptions on $\Omega$. We show that the condition for degeneration of $m$ near the boundary is optimal.References
- Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588, DOI 10.1007/978-3-0348-5075-9
- Wolfgang Arendt and Philippe Bénilan, Wiener regularity and heat semigroups on spaces of continuous functions, Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl., vol. 35, Birkhäuser, Basel, 1999, pp. 29–49. MR 1724790
- W. Arendt, Heat Kernels. Internetseminar 2005/2006, http://www.uni-ulm.de/mawi/iaa/members/professors/arendt.html, 2005/06.
- Wolfgang Arendt, Positive semigroups of kernel operators, Positivity 12 (2008), no. 1, 25–44. MR 2373131, DOI 10.1007/s11117-007-2137-z
- Wolfgang Arendt, Paul R. Chernoff, and Tosio Kato, A generalization of dissipativity and positive semigroups, J. Operator Theory 8 (1982), no. 1, 167–180. MR 670183
- Wolfgang Arendt and Daniel Daners, The Dirichlet problem by variational methods, Bull. Lond. Math. Soc. 40 (2008), no. 1, 51–56. MR 2409177, DOI 10.1112/blms/bdm091
- Wolfgang Arendt and Daniel Daners, Varying domains: stability of the Dirichlet and the Poisson problem, Discrete Contin. Dyn. Syst. 21 (2008), no. 1, 21–39. MR 2379455, DOI 10.3934/dcds.2008.21.21
- Markus Biegert and Mahamadi Warma, Regularity in capacity and the Dirichlet Laplacian, Potential Anal. 25 (2006), no. 3, 289–305. MR 2255350, DOI 10.1007/s11118-006-9018-0
- Piermarco Cannarsa, Genni Fragnelli, and Dario Rocchetti, Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media 2 (2007), no. 4, 695–715. MR 2357764, DOI 10.3934/nhm.2007.2.695
- T. Cazenave, A. Haraux, Introduction aux problèmes d’évolution semi-linéaires elliptiques, Paris, 1990.
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- E. B. Davies, $L^1$ properties of second order elliptic operators, Bull. London Math. Soc. 17 (1985), no. 5, 417–436. MR 806008, DOI 10.1112/blms/17.5.417
- R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. I, Springer, Berlin, 1990.
- Michael Demuth and Jan A. van Casteren, Stochastic spectral theory for selfadjoint Feller operators, Probability and its Applications, Birkhäuser Verlag, Basel, 2000. A functional integration approach. MR 1772266, DOI 10.1007/978-3-0348-8460-0
- Xuan Thinh Duong and El Maati Ouhabaz, Complex multiplicative perturbations of elliptic operators: heat kernel bounds and holomorphic functional calculus, Differential Integral Equations 12 (1999), no. 3, 395–418. MR 1674426
- K. D. Elworthy, Stochastic flows and the $C_{0}$-diffusion property, Stochastics 6 (1981/82), no. 3-4, 233–238. MR 665401, DOI 10.1080/17442508208833205
- William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468–519. MR 47886, DOI 10.2307/1969644
- Robert Haller-Dintelmann, Matthias Hieber, and Joachim Rehberg, Irreducibility and mixed boundary conditions, Positivity 12 (2008), no. 1, 83–91. MR 2373135, DOI 10.1007/s11117-007-2131-5
- Stefan Hildebrandt, On Dirichlet’s principle and Poincaré’s méthode de balayage, Math. Nachr. 278 (2005), no. 1-2, 141–144. MR 2111805, DOI 10.1002/mana.200310231
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 161019
- Gunter Lumer, Perturbation de générateurs infinitésimaux, du type “changement de temps”, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 4, 271–279 (French, with English summary). MR 338832
- Gunter Lumer, Problème de Cauchy pour opérateurs locaux et “changement de temps”, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3-4, xxiii, 409–446 (French, with English summary). MR 420039
- Petr Mandl, Analytical treatment of one-dimensional Markov processes, Die Grundlehren der mathematischen Wissenschaften, Band 151, Academia [Publishing House of the Czechoslovak Academy of Sciences], Prague; Springer-Verlag New York, Inc., New York, 1968. MR 0247667
- Alan McIntosh and Andrea Nahmod, Heat kernel estimates and functional calculi of $-b\Delta$, Math. Scand. 87 (2000), no. 2, 287–319. MR 1795749, DOI 10.7146/math.scand.a-14310
- Keith Miller, Exceptional boundary points for the nondivergence equation which are regular for the Laplace equation and vice-versa, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 315–330. MR 229961
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- El Maati Ouhabaz, Analysis of heat equations on domains, London Mathematical Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ, 2005. MR 2124040
- El-Maati Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups, Potential Anal. 5 (1996), no. 6, 611–625. MR 1437587, DOI 10.1007/BF00275797
- M. M. H. Pang, $L^1$ properties of two classes of singular second order elliptic operators, J. London Math. Soc. (2) 38 (1988), no. 3, 525–543. MR 972136, DOI 10.1112/jlms/s2-38.3.525
- Christian G. Simader, Equivalence of weak Dirichlet’s principle, the method of weak solutions and Perron’s method towards classical solutions of Dirichlet’s problem for harmonic functions, Math. Nachr. 279 (2006), no. 4, 415–430. MR 2205830, DOI 10.1002/mana.200310368
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- J. van Casteren, Generators of Strongly Continuous Semigroups, Research Notes in Mathematics 115, Pitman, Boston, 1985.
Bibliographic Information
- Wolfgang Arendt
- Affiliation: Institute of Applied Analysis, University of Ulm, 89069 Ulm, Germany
- MR Author ID: 26945
- Email: wolfgang.arendt@uni-ulm.de
- Michal Chovanec
- Affiliation: Institute of Applied Analysis, University of Ulm, 89069 Ulm, Germany
- Email: michal.chovanec@uni-ulm.de
- Received by editor(s): July 21, 2008
- Published electronically: June 10, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 5861-5878
- MSC (2010): Primary 35K05, 47D06
- DOI: https://doi.org/10.1090/S0002-9947-2010-05077-9
- MathSciNet review: 2661499