Functional equations of $L$-functions for symmetric products of the Kloosterman sheaf
HTML articles powered by AMS MathViewer
- by Lei Fu and Daqing Wan
- Trans. Amer. Math. Soc. 362 (2010), 5947-5965
- DOI: https://doi.org/10.1090/S0002-9947-2010-05172-4
- Published electronically: June 14, 2010
- PDF | Request permission
Abstract:
We determine the (arithmetic) local monodromy at $0$ and at $\infty$ of the Kloosterman sheaf using local Fourier transformations and Laumon’s stationary phase principle. We then calculate $\epsilon$-factors for symmetric products of the Kloosterman sheaf. Using Laumon’s product formula, we get functional equations of $L$-functions for these symmetric products and prove a conjecture of Evans on signs of constants of functional equations.References
- Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354652
- H. Timothy Choi and Ronald Evans, Congruences for sums of powers of Kloosterman sums, Int. J. Number Theory 3 (2007), no. 1, 105–117. MR 2310495, DOI 10.1142/S1793042107000821
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- R. J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math., to appear.
- R. J. Evans, Letter to N. Katz, Nov. 2005.
- L. Fu, Calculation of $\ell$-adic local Fourier transformations, arXiv: 0702436 [math.AG] (2007).
- Lei Fu and Daqing Wan, Trivial factors for $L$-functions of symmetric products of Kloosterman sheaves, Finite Fields Appl. 14 (2008), no. 2, 549–570. MR 2401995, DOI 10.1016/j.ffa.2007.07.005
- Lei Fu and Daqing Wan, $L$-functions for symmetric products of Kloosterman sums, J. Reine Angew. Math. 589 (2005), 79–103. MR 2194679, DOI 10.1515/crll.2005.2005.589.79
- Lei Fu and Daqing Wan, $L$-functions of symmetric products of the Kloosterman sheaf over $\textbf {Z}$, Math. Ann. 342 (2008), no. 2, 387–404. MR 2425148, DOI 10.1007/s00208-008-0240-5
- K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263–289. MR 1874236, DOI 10.1515/advg.2001.017
- Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR 955052, DOI 10.1515/9781400882120
- G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210 (French). MR 908218
- Marko J. Moisio, The moments of a Kloosterman sum and the weight distribution of a Zetterberg-type binary cyclic code, IEEE Trans. Inform. Theory 53 (2007), no. 2, 843–847. MR 2302793, DOI 10.1109/TIT.2006.889020
- Marko Moisio, On the moments of Kloosterman sums and fibre products of Kloosterman curves, Finite Fields Appl. 14 (2008), no. 2, 515–531. MR 2401992, DOI 10.1016/j.ffa.2007.06.001
- C. Peters, J. Top, and M. van der Vlugt, The Hasse zeta function of a $K3$ surface related to the number of words of weight $5$ in the Melas codes, J. Reine Angew. Math. 432 (1992), 151–176. MR 1184764
- Philippe Robba, Symmetric powers of the $p$-adic Bessel equation, J. Reine Angew. Math. 366 (1986), 194–220. MR 833018, DOI 10.1515/crll.1986.366.194
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Daqing Wan, Dwork’s conjecture on unit root zeta functions, Ann. of Math. (2) 150 (1999), no. 3, 867–927. MR 1740990, DOI 10.2307/121058
Bibliographic Information
- Lei Fu
- Affiliation: Institute of Mathematics, Nankai University, Tianjin, People’s Republic of China
- Email: leifu@nankai.edu.cn
- Daqing Wan
- Affiliation: Department of Mathematics, University of California, Irvine, California 92697
- MR Author ID: 195077
- Email: dwan@math.uci.edu
- Received by editor(s): January 4, 2009
- Published electronically: June 14, 2010
- Additional Notes: The research of the first author was supported by the NSFC (10525107).
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 5947-5965
- MSC (2000): Primary 11L05, 14G15
- DOI: https://doi.org/10.1090/S0002-9947-2010-05172-4
- MathSciNet review: 2661503