Relationship between scattering matrix and spectrum of quantum graphs
HTML articles powered by AMS MathViewer
- by G. Berkolaiko and B. Winn
- Trans. Amer. Math. Soc. 362 (2010), 6261-6277
- DOI: https://doi.org/10.1090/S0002-9947-2010-04897-4
- Published electronically: July 14, 2010
- PDF | Request permission
Abstract:
We investigate the equivalence between spectral characteristics of the Laplace operator on a metric graph and the associated unitary scattering operator. We prove that the statistics of level spacings and moments of observations in the eigenbases coincide in the limit that all bond lengths approach a positive constant value.References
- F. Barra and P. Gaspard, On the level spacing distribution in quantum graphs, J. Statist. Phys. 101 (2000), no. 1-2, 283–319. Dedicated to Grégoire Nicolis on the occasion of his sixtieth birthday (Brussels, 1999). MR 1807548, DOI 10.1023/A:1026495012522
- Gregory Berkolaiko, Form factor expansion for large graphs: a diagrammatic approach, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 35–49. MR 2277606, DOI 10.1090/conm/415/07858
- Gregory Berkolaiko, Robert Carlson, Stephen A. Fulling, and Peter Kuchment (eds.), Quantum graphs and their applications, Contemporary Mathematics, vol. 415, American Mathematical Society, Providence, RI, 2006. MR 2279143, DOI 10.1090/conm/415
- G. Berkolaiko and J. P. Keating, Two-point spectral correlations for star graphs, J. Phys. A 32 (1999), no. 45, 7827–7841. MR 1732273, DOI 10.1088/0305-4470/32/45/302
- G. Berkolaiko, J. P. Keating, and U. Smilansky, Quantum ergodicity for graphs related to interval maps, Comm. Math. Phys. 273 (2007), no. 1, 137–159. MR 2308752, DOI 10.1007/s00220-007-0244-0
- G. Berkolaiko, J. P. Keating, and B. Winn, No quantum ergodicity for star graphs, Comm. Math. Phys. 250 (2004), no. 2, 259–285. MR 2094517, DOI 10.1007/s00220-004-1145-0
- G. Berkolaiko, H. Schanz, and R. S. Whitney, Leading off-diagonal correction to the form factor of large graphs, Phys. Rev. Lett. 88 (2002), no. 10, art. no. 104101.
- O. Bohigas, M.-J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984), no. 1, 1–4. MR 730191, DOI 10.1103/PhysRevLett.52.1
- G. Casati, F. Valz-Gris, and I. Guarnieri, On the connection between quantization of nonintegrable systems and statistical theory of spectra, Lett. Nuovo Cimento (2) 28 (1980), no. 8, 279–282. MR 580056
- Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), no. 3, 497–502 (French, with English summary). MR 818831
- Pavel Exner, Jonathan P. Keating, Peter Kuchment, Toshikazu Sunada, and Alexander Teplyaev (eds.), Analysis on graphs and its applications, Proceedings of Symposia in Pure Mathematics, vol. 77, American Mathematical Society, Providence, RI, 2008. Papers from the program held in Cambridge, January 8–June 29, 2007. MR 2459860, DOI 10.1090/pspum/077
- P. Exner and P. Šeba, Free quantum motion on a branching graph, Rep. Math. Phys. 28 (1989), no. 1, 7–26. MR 1109248, DOI 10.1016/0034-4877(89)90023-2
- Leonid Friedlander, Genericity of simple eigenvalues for a metric graph, Israel J. Math. 146 (2005), 149–156. MR 2151598, DOI 10.1007/BF02773531
- S. A. Fulling, P. Kuchment, and J. H. Wilson, Index theorems for quantum graphs, J. Phys. A 40 (2007), no. 47, 14165–14180. MR 2438118, DOI 10.1088/1751-8113/40/47/009
- N. I. Gerasimenko and B. S. Pavlov, A scattering problem on noncompact graphs, Teoret. Mat. Fiz. 74 (1988), no. 3, 345–359 (Russian, with English summary); English transl., Theoret. and Math. Phys. 74 (1988), no. 3, 230–240. MR 953298, DOI 10.1007/BF01016616
- Sven Gnutzmann and Alexander Altland, Spectral correlations of individual quantum graphs, Phys. Rev. E (3) 72 (2005), no. 5, 056215, 14. MR 2198317, DOI 10.1103/PhysRevE.72.056215
- S. Gnutzmann and U. Smilansky, Quantum graphs: Applications to quantum chaos and universal spectral statistics, Advances in Physics 55 (2006), no. 5, 527–625.
- D. Grieser, Monotone unitary families, Preprint ArXiv:0711.2869.
- J. S. Griffith, A free-electron theory of conjugated molecules. I. Polycyclic hydrocarbons, Trans. Faraday Soc. 49 (1953), 345–351.
- M. Harmer, Hermitian symplectic geometry and extension theory, J. Phys. A 33 (2000), no. 50, 9193–9203. MR 1804888, DOI 10.1088/0305-4470/33/50/305
- V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires, J. Phys. A 32 (1999), no. 4, 595–630. MR 1671833, DOI 10.1088/0305-4470/32/4/006
- Vadim Kostrykin, Jürgen Potthoff, and Robert Schrader, Heat kernels on metric graphs and a trace formula, Adventures in mathematical physics, Contemp. Math., vol. 447, Amer. Math. Soc., Providence, RI, 2007, pp. 175–198. MR 2423580, DOI 10.1090/conm/447/08691
- T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett. 79 (1997), 4794–4797.
- Tsampikos Kottos and Uzy Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Physics 274 (1999), no. 1, 76–124. MR 1694731, DOI 10.1006/aphy.1999.5904
- Peter Kuchment, Graph models for waves in thin structures, Waves Random Media 12 (2002), no. 4, R1–R24. MR 1937279, DOI 10.1088/0959-7174/12/4/201
- Peter Kuchment, Quantum graphs. I. Some basic structures, Waves Random Media 14 (2004), no. 1, S107–S128. Special section on quantum graphs. MR 2042548, DOI 10.1088/0959-7174/14/1/014
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Pavel Kurasov and Marlena Nowaczyk, Inverse spectral problem for quantum graphs, J. Phys. A 38 (2005), no. 22, 4901–4915. MR 2148632, DOI 10.1088/0305-4470/38/22/014
- Gunter Lumer, Espaces ramifiés, et diffusions sur les réseaux topologiques, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 12, A627–A630 (French, with English summary). MR 606449
- Madan Lal Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. MR 2129906
- Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337
- Serge Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math. (2) 111 (1987), no. 4, 401–413 (French, with English summary). MR 921561
- L. Pauling, The dimagnetic entropy of aromatic molecules, J. Chem. Phys 4 (1936), 673–677.
- O. M. Penkin and Yu. V. Pokornyĭ, On a boundary value problem on a graph, Differentsial′nye Uravneniya 24 (1988), no. 4, 701–703, 734–735 (Russian). MR 940760
- Jean-Pierre Roth, Le spectre du laplacien sur un graphe, Théorie du potentiel (Orsay, 1983) Lecture Notes in Math., vol. 1096, Springer, Berlin, 1984, pp. 521–539 (French). MR 890375, DOI 10.1007/BFb0100128
- K. Ruedenberg and C. W. Scherr, Free-electron network model for conjugated systems. I. Theory, J. Chem. Physics 21 (1953), no. 9, 1565–1581.
- H. Schanz and U. Smilansky, Spectral statistics for quantum graphs: Periodic orbits and combinatorics, Phil. Mag. B 80 (2000), 1999–2021 (Proceedings of the Australian summer school on quantum chaos and mesoscopics).
- A. I. Šnirel′man, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), no. 6(180), 181–182 (Russian). MR 0402834
- Gregor Tanner, Spectral statistics for unitary transfer matrices of binary graphs, J. Phys. A 33 (2000), no. 18, 3567–3585. MR 1766442, DOI 10.1088/0305-4470/33/18/304
- Gregor Tanner, Unitary-stochastic matrix ensembles and spectral statistics, J. Phys. A 34 (2001), no. 41, 8485–8500. MR 1876609, DOI 10.1088/0305-4470/34/41/307
- Joachim von Below, A characteristic equation associated to an eigenvalue problem on $c^2$-networks, Linear Algebra Appl. 71 (1985), 309–325. MR 813056, DOI 10.1016/0024-3795(85)90258-7
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
- Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941. MR 916129, DOI 10.1215/S0012-7094-87-05546-3
Bibliographic Information
- G. Berkolaiko
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 366171
- Email: gregory.berkolaiko@math.tamu.edu
- B. Winn
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Address at time of publication: School of Mathematics, Loughborough University, Loughborough, LE11 3TU, United Kingdom
- Received by editor(s): March 21, 2008
- Published electronically: July 14, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 6261-6277
- MSC (2000): Primary 34L20, 81Q10, 81Q50
- DOI: https://doi.org/10.1090/S0002-9947-2010-04897-4
- MathSciNet review: 2678973