The eigenvalues of the Laplacian on domains with small slits
HTML articles powered by AMS MathViewer
- by Luc Hillairet and Chris Judge
- Trans. Amer. Math. Soc. 362 (2010), 6231-6259
- DOI: https://doi.org/10.1090/S0002-9947-2010-04943-8
- Published electronically: August 3, 2010
- PDF | Request permission
Abstract:
We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of the Laplacian. In particular, we show that as the length of the slit tends to zero, each real-analytic eigenvalue branch tends to an eigenvalue of the original domain. By combining this with our earlier work (2009), we obtain the following application: The generic multiply connected polygon has a simple spectrum.References
- Yves Colin de Verdière, Pseudo-laplaciens. I, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, xiii, 275–286 (French, with English summary). MR 688031
- Yves Colin de Verdière, Construction de laplaciens dont une partie finie du spectre est donnée, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 4, 599–615 (French). MR 932800
- Alex Eskin, Howard Masur, and Anton Zorich, Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 61–179. MR 2010740, DOI 10.1007/s10240-003-0015-1
- Luc Hillairet and Chris Judge, Generic spectral simplicity of polygons, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2139–2145. MR 2480296, DOI 10.1090/S0002-9939-09-09621-X
- P. M. Morse and P. J. Rubinstein, Diffraction of waves by ribbons and slits, Physical Review, 54, pp. 895–898, 1938.
- Philip M. Morse and Herman Feshbach, Methods of theoretical physics. 2 volumes, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR 0059774
- É. Mathieu. Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. Journal de Mathématiques Pures et Appliquées, pp. 137–203, 1868.
- C. M. Judge, Tracking eigenvalues to the frontier of moduli space. II. Limits for eigenvalue branches, Geom. Funct. Anal. 12 (2002), no. 1, 93–120. MR 1904559, DOI 10.1007/s00039-002-8239-7
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Scott A. Wolpert, Spectral limits for hyperbolic surfaces. I, II, Invent. Math. 108 (1992), no. 1, 67–89, 91–129. MR 1156387, DOI 10.1007/BF02100600
Bibliographic Information
- Luc Hillairet
- Affiliation: Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, Université de Nantes, 2 rue de la Houssinière, BP 92 208, F-44 322 Nantes Cedex 3, France
- MR Author ID: 705179
- Email: Luc.Hillairet@math.univ-nantes.fr
- Chris Judge
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47401
- MR Author ID: 349512
- Email: cjudge@indiana.edu
- Received by editor(s): March 3, 2008
- Published electronically: August 3, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 6231-6259
- MSC (2010): Primary 58C40; Secondary 58J37, 35P20
- DOI: https://doi.org/10.1090/S0002-9947-2010-04943-8
- MathSciNet review: 2678972