Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. II
HTML articles powered by AMS MathViewer
- by Kei Kondo and Minoru Tanaka
- Trans. Amer. Math. Soc. 362 (2010), 6293-6324
- DOI: https://doi.org/10.1090/S0002-9947-2010-05031-7
- Published electronically: July 13, 2010
- PDF | Request permission
Abstract:
We prove, as our main theorem, the finiteness of topological type of a complete open Riemannian manifold $M$ with a base point $p \in M$ whose radial curvature at $p$ is bounded from below by that of a non-compact model surface of revolution $\widetilde {M}$ which admits a finite total curvature and has no pair of cut points in a sector. Here a sector is, by definition, a domain cut off by two meridians emanating from the base point $\tilde {p} \in \widetilde {M}$. Notice that our model $\widetilde {M}$ does not always satisfy the diameter growth condition introduced by Abresch and Gromoll. In order to prove the main theorem, we need a new type of the Toponogov comparison theorem. As an application of the main theorem, we present a partial answer to Milnor’s open conjecture on the fundamental group of complete open manifolds.References
- Uwe Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 651–670. MR 839689
- Uwe Abresch and Detlef Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), no. 2, 355–374. MR 1030656, DOI 10.1090/S0894-0347-1990-1030656-6
- A. D. Alexandrow, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955 (German). MR 0071041
- M. Berger, Les variétés Riemanniennes $(1/4)$-pincées, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 14 (1960), 161–170 (French). MR 140054
- O. Bonnet, Sur quelques propriétés des lignes géodésiques, Comptes Rendus Ac. Sc. Paris 40 (1855), 1311–1313.
- Yu. Burago, M. Gromov, and G. Perel′man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3–51, 222 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 1–58. MR 1185284, DOI 10.1070/RM1992v047n02ABEH000877
- Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, Vol. 9, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0458335
- Jeff Cheeger and Detlef Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443. MR 309010, DOI 10.2307/1970819
- S. Cohn -Vossen, Totalkrümmung und geodätische Linien auf einfach zusammen- hängenden offenen volständigen Flächenstücken, Recueil Math. Moscow 43 (1936), 139–163.
- U. Dini, Fondamenti per la teorica delle funzioni di variabili reali, Pisa, 1878.
- Herman Gluck and David A. Singer, Scattering of geodesic fields. II, Ann. of Math. (2) 110 (1979), no. 2, 205–225. MR 549487, DOI 10.2307/1971259
- Jens Gravesen, Steen Markvorsen, Robert Sinclair, and Minoru Tanaka, The cut locus of a torus of revolution, Asian J. Math. 9 (2005), no. 1, 103–120. MR 2150694
- Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. MR 630949, DOI 10.1007/BF02566208
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Reprint of the 2001 English edition, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. Based on the 1981 French original; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 2307192
- Karsten Grove and Peter Petersen V, Bounding homotopy types by geometry, Ann. of Math. (2) 128 (1988), no. 1, 195–206. MR 951512, DOI 10.2307/1971439
- Karsten Grove, Peter Petersen V, and Jyh Yang Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1990), no. 1, 205–213. MR 1029396, DOI 10.1007/BF01234418
- Karsten Grove and Katsuhiro Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201–211. MR 500705, DOI 10.2307/1971164
- Philip Hartman, Ordinary differential equations, Classics in Applied Mathematics, vol. 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)]; With a foreword by Peter Bates. MR 1929104, DOI 10.1137/1.9780898719222
- Thomas Hawkins, Lebesgue’s theory of integration. Its origins and development, University of Wisconsin Press, Madison, Wis.-London, 1970. MR 0269473
- James J. Hebda, Metric structure of cut loci in surfaces and Ambrose’s problem, J. Differential Geom. 40 (1994), no. 3, 621–642. MR 1305983
- Jin-ichi Itoh and Minoru Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc. 353 (2001), no. 1, 21–40. MR 1695025, DOI 10.1090/S0002-9947-00-02564-2
- Yoe Itokawa, Yoshiroh Machigashira, and Katsuhiro Shiohama, Generalized Toponogov’s theorem for manifolds with radial curvature bounded below, Explorations in complex and Riemannian geometry, Contemp. Math., vol. 332, Amer. Math. Soc., Providence, RI, 2003, pp. 121–130. MR 2018335, DOI 10.1090/conm/332/05932
- Neil N. Katz and Kei Kondo, Generalized space forms, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2279–2284. MR 1885652, DOI 10.1090/S0002-9947-02-02966-5
- W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. (2) 69 (1959), 654–666. MR 105709, DOI 10.2307/1970029
- Wilhelm Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), 47–54 (German). MR 139120, DOI 10.1007/BF02567004
- Kei Kondo and Shin-ichi Ohta, Topology of complete manifolds with radial curvature bounded from below, Geom. Funct. Anal. 17 (2007), no. 4, 1237–1247. MR 2373016, DOI 10.1007/s00039-007-0625-8
- K. Kondo and M. Tanaka, Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. I, Preprint 2006, submitted to Math. Ann. (October 23, 2006), http://arXiv.org/abs/0901.4010
- K. Kondo and M. Tanaka, Toponogov comparison theorem for open triangles, Preprint 2009, http://arXiv.org/abs/0901.4019
- H. von Mangoldt, Über diejenigen Punkte auf positiv gekrümmten Flächen, welche die Eigenschaft haben, dass die von Ihnen ausgehenden geodätischen Linien nie aufhören, kürzeste Linien zu sein, J. Reine. Angew. Math. 91 (1881), 23–53.
- Yukihiro Mashiko, Koichi Nagano, and Kazuo Otsuka, The asymptotic cones of manifolds of roughly non-negative radial curvature, J. Math. Soc. Japan 57 (2005), no. 1, 55–68. MR 2114720
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311
- Shin-Ichi Ohta, Markov type of Alexandrov spaces of non-negative curvature, Mathematika 55 (2009), no. 1-2, 177–189. MR 2573607, DOI 10.1112/S0025579300001005
- Shin-ichi Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math. 131 (2009), no. 2, 475–516. MR 2503990, DOI 10.1353/ajm.0.0048
- Shin-ichi Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009), no. 3, 669–699. MR 2480707, DOI 10.1007/s00208-008-0286-4
- Yukio Otsu and Takashi Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629–658. MR 1274133
- G. Ya. Perel’man, A. D. Aleksandrov spaces with curvatures bounded below, II, Preprint, 1991.
- G. Ya. Perel′man, Elements of Morse theory on Aleksandrov spaces, Algebra i Analiz 5 (1993), no. 1, 232–241 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 5 (1994), no. 1, 205–213. MR 1220498
- Henri Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), no. 3, 237–274 (French). MR 1500710, DOI 10.1090/S0002-9947-1905-1500710-4
- H. E. Rauch, A contribution to differential geometry in the large, Ann. of Math. (2) 54 (1951), 38–55. MR 42765, DOI 10.2307/1969309
- Takashi Sakai, Riemannian geometry, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996. Translated from the 1992 Japanese original by the author. MR 1390760, DOI 10.1090/mmono/149
- I. J. Schoenberg, Some applications of the calculus of variations to Riemannian geometry, Ann. of Math. (2) 33 (1932), no. 3, 485–495. MR 1503071, DOI 10.2307/1968530
- Katsuhiro Shiohama, The role of total curvature on complete noncompact Riemannian $2$-manifolds, Illinois J. Math. 28 (1984), no. 4, 597–620. MR 761993
- Katsuhiro Shiohama, Recent developments in sphere theorems, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 551–576. MR 1216646, DOI 10.1090/pspum/054.3/1216646
- Katsuhiro Shiohama, Takashi Shioya, and Minoru Tanaka, The geometry of total curvature on complete open surfaces, Cambridge Tracts in Mathematics, vol. 159, Cambridge University Press, Cambridge, 2003. MR 2028047, DOI 10.1017/CBO9780511543159
- Katsuhiro Shiohama and Minoru Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) Sémin. Congr., vol. 1, Soc. Math. France, Paris, 1996, pp. 531–559 (English, with English and French summaries). MR 1427770
- Katsuhiro Shiohama and Minoru Tanaka, Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below, Math. Z. 241 (2002), no. 2, 341–351. MR 1935490, DOI 10.1007/s002090200418
- Takashi Shioya and Takao Yamaguchi, Collapsing three-manifolds under a lower curvature bound, J. Differential Geom. 56 (2000), no. 1, 1–66. MR 1863020
- Takashi Shioya and Takao Yamaguchi, Volume collapsed three-manifolds with a lower curvature bound, Math. Ann. 333 (2005), no. 1, 131–155. MR 2169831, DOI 10.1007/s00208-005-0667-x
- Robert Sinclair and Minoru Tanaka, A bound on the number of endpoints of the cut locus, LMS J. Comput. Math. 9 (2006), 21–39. MR 2199583, DOI 10.1112/S1461157000001170
- Robert Sinclair and Minoru Tanaka, The cut locus of a two-sphere of revolution and Toponogov’s comparison theorem, Tohoku Math. J. (2) 59 (2007), no. 3, 379–399. MR 2365347
- Christina Sormani, Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups, J. Differential Geom. 54 (2000), no. 3, 547–559. MR 1823314
- C. Sturm, Sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl. $(1)$ 1 (1836), 106–186.
- Minoru Tanaka, On the cut loci of a von Mangoldt’s surface of revolution, J. Math. Soc. Japan 44 (1992), no. 4, 631–641. MR 1180440, DOI 10.2969/jmsj/04440631
- Minoru Tanaka, On a characterization of a surface of revolution with many poles, Mem. Fac. Sci. Kyushu Univ. Ser. A 46 (1992), no. 2, 251–268. MR 1195469, DOI 10.2206/kyushumfs.46.251
- V. A. Toponogov, Riemannian spaces having their curvature bounded below by a positive number, Dokl. Akad. Nauk SSSR 120 (1958), 719–721 (Russian). MR 0099701
- V. A. Toponogov, Riemann spaces with curvature bounded below, Uspehi Mat. Nauk 14 (1959), no. 1 (85), 87–130 (Russian). MR 0103510
- Richard L. Wheeden and Antoni Zygmund, Measure and integral, Pure and Applied Mathematics, Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977. An introduction to real analysis. MR 0492146
- Burkhard Wilking, On fundamental groups of manifolds of nonnegative curvature, Differential Geom. Appl. 13 (2000), no. 2, 129–165. MR 1783960, DOI 10.1016/S0926-2245(00)00030-9
- Takao Yamaguchi, A convergence theorem in the geometry of Alexandrov spaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) Sémin. Congr., vol. 1, Soc. Math. France, Paris, 1996, pp. 601–642 (English, with English and French summaries). MR 1427772
- Shun-Hui Zhu, A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications, Amer. J. Math. 116 (1994), no. 3, 669–682. MR 1277451, DOI 10.2307/2374996
Bibliographic Information
- Kei Kondo
- Affiliation: Department of Mathematics, Tokai University, Hiratsuka City, Kanagawa Pref. 259 – 1292 Japan
- Email: keikondo@keyaki.cc.u-tokai.ac.jp
- Minoru Tanaka
- Affiliation: Department of Mathematics, Tokai University, Hiratsuka City, Kanagawa Pref. 259 – 1292 Japan
- Email: m-tanaka@sm.u-tokai.ac.jp
- Received by editor(s): December 17, 2007
- Received by editor(s) in revised form: June 30, 2008
- Published electronically: July 13, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 362 (2010), 6293-6324
- MSC (2010): Primary 53C21; Secondary 53C22
- DOI: https://doi.org/10.1090/S0002-9947-2010-05031-7
- MathSciNet review: 2678975