Approximation using scattered shifts of a multivariate function
HTML articles powered by AMS MathViewer
- by Ronald DeVore and Amos Ron
- Trans. Amer. Math. Soc. 362 (2010), 6205-6229
- DOI: https://doi.org/10.1090/S0002-9947-2010-05070-6
- Published electronically: July 15, 2010
- PDF | Request permission
Abstract:
The approximation of a general $d$-variate function $f$ by the shifts $\phi (\cdot -\xi )$, $\xi \in \Xi \subset \mathbb {R}^d$, of a fixed function $\phi$ occurs in many applications such as data fitting, neural networks, and learning theory. When $\Xi =h\mathbb {Z}^d$ is a dilate of the integer lattice, there is a rather complete understanding of the approximation problem using Fourier techniques. However, in most applications, the center set $\Xi$ is either given, or can be chosen with complete freedom. In both of these cases, the shift-invariant setting is too restrictive. This paper studies the approximation problem in the case that $\Xi$ is arbitrary. It establishes approximation theorems whose error bounds reflect the local density of the points in $\Xi$. Two different settings are analyzed. The first occurs when the set $\Xi$ is prescribed in advance. In this case, the theorems of this paper show that, in analogy with the classical univariate spline approximation, an improved approximation occurs in regions where the density is high. The second setting corresponds to the problem of nonlinear approximation. In that setting the set $\Xi$ can be chosen using information about the target function $f$. We discuss how to ‘best’ make these choices and give estimates for the approximation error.References
- R. A. Brownlee, E. H. Georgoulis, and J. Levesley, Extending the range of error estimates for radial approximation in Euclidean space and on spheres, SIAM J. Math. Anal. 39 (2007), no. 2, 554–564. MR 2338420, DOI 10.1137/060650428
- M. D. Buhmann, N. Dyn, and D. Levin, On quasi-interpolation by radial basis functions with scattered centres, Constr. Approx. 11 (1995), no. 2, 239–254. MR 1342386, DOI 10.1007/BF01203417
- Martin D. Buhmann and Amos Ron, Radial basis functions: $L^p$-approximation orders with scattered centres, Wavelets, images, and surface fitting (Chamonix-Mont-Blanc, 1993) A K Peters, Wellesley, MA, 1994, pp. 93–112. MR 1302241
- M. D. Buhmann, Multivariate cardinal interpolation with radial-basis functions, Constr. Approx. 6 (1990), no. 3, 225–255. MR 1054754, DOI 10.1007/BF01890410
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Carl de Boor, A practical guide to splines, Revised edition, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York, 2001. MR 1900298
- Carl de Boor, Ronald A. DeVore, and Amos Ron, Approximation from shift-invariant subspaces of $L_2(\mathbf R^d)$, Trans. Amer. Math. Soc. 341 (1994), no. 2, 787–806. MR 1195508, DOI 10.1090/S0002-9947-1994-1195508-X
- Carl de Boor and Amos Ron, The exponentials in the span of the multi-integer translates of a compactly supported function; quasi-interpolation and approximation order, J. London Math. Soc. (2) 45 (1992), no. 3, 519–535. MR 1180260, DOI 10.1112/jlms/s2-45.3.519
- Carl de Boor and Amos Ron, Fourier analysis of the approximation power of principal shift-invariant spaces, Constr. Approx. 8 (1992), no. 4, 427–462. MR 1194028, DOI 10.1007/BF01203462
- Ronald A. DeVore, Björn Jawerth, and Vasil Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), no. 4, 737–785. MR 1175690, DOI 10.2307/2374796
- R. A. DeVore and V. A. Popov, Interpolation spaces and nonlinear approximation, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 191–205. MR 942269, DOI 10.1007/BFb0078875
- Ronald A. DeVore and Xiang Ming Yu, Degree of adaptive approximation, Math. Comp. 55 (1990), no. 192, 625–635. MR 1035930, DOI 10.1090/S0025-5718-1990-1035930-5
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- Jean Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976) Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, pp. 85–100. MR 0493110
- Jean Duchon, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^{m}$-splines, RAIRO Anal. Numér. 12 (1978), no. 4, 325–334, vi (French, with English summary). MR 519016, DOI 10.1051/m2an/1978120403251
- N. Dyn and A. Ron, Radial basis function approximation: from gridded centres to scattered centres, Proc. London Math. Soc. (3) 71 (1995), no. 1, 76–108. MR 1327934, DOI 10.1112/plms/s3-71.1.76
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Thomas Hangelbroek, Error estimates for thin plate spline approximation in the disk, Constr. Approx. 28 (2008), no. 1, 27–59. MR 2357985, DOI 10.1007/s00365-007-0679-8
- Michael J. Johnson, On the approximation order of principal shift-invariant subspaces of $L_p(\textbf {R}^d)$, J. Approx. Theory 91 (1997), no. 3, 279–319. MR 1486470, DOI 10.1006/jath.1996.3061
- M. J. Johnson, A bound on the approximation order of surface splines, Constr. Approx. 14 (1998), no. 3, 429–438. MR 1626718, DOI 10.1007/s003659900082
- Michael J. Johnson, Approximation in $L_p(\textbf {R}^d)$ from spaces spanned by the perturbed integer translates of a radial function, J. Approx. Theory 107 (2000), no. 2, 163–203. MR 1806949, DOI 10.1006/jath.2000.3479
- W. R. Madych and S. A. Nelson, Multivariate interpolation: A variational theory, unpublished, 1983.
- Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR 1085487
- Charles A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986), no. 1, 11–22. MR 891767, DOI 10.1007/BF01893414
- Francis J. Narcowich and Joseph D. Ward, Scattered-data interpolation on ${\Bbb R}^n$: error estimates for radial basis and band-limited functions, SIAM J. Math. Anal. 36 (2004), no. 1, 284–300. MR 2083863, DOI 10.1137/S0036141002413579
- Pencho P. Petrushev, Direct and converse theorems for spline and rational approximation and Besov spaces, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 363–377. MR 942281, DOI 10.1007/BFb0078887
- M. J. D. Powell, The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math. 68 (1994), no. 1, 107–128. MR 1278451, DOI 10.1007/s002110050051
- Amos Ron, The $L_2$-approximation orders of principal shift-invariant spaces generated by a radial basis function, Numerical methods in approximation theory, Vol. 9 (Oberwolfach, 1991) Internat. Ser. Numer. Math., vol. 105, Birkhäuser, Basel, 1992, pp. 245–268. MR 1269365, DOI 10.1007/978-3-0348-8619-2_{1}4
- R. Schaback, Approximation by radial basis functions with finitely many centers, Constr. Approx. 12 (1996), no. 3, 331–340. MR 1405002, DOI 10.1007/s003659900017
- I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), no. 4, 811–841. MR 1503439, DOI 10.2307/1968466
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
- Holger Wendland, Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17, Cambridge University Press, Cambridge, 2005. MR 2131724
- Zong Min Wu and Robert Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27. MR 1199027, DOI 10.1093/imanum/13.1.13
- J. Yoon, Approximation in $L_p(\mathbf R^d)$ from a space spanned by the scattered shifts of a radial basis function, Constr. Approx. 17 (2001), no. 2, 227–247. MR 1814356, DOI 10.1007/s003650010033
- Jungho Yoon, Interpolation by radial basis functions on Sobolev space, J. Approx. Theory 112 (2001), no. 1, 1–15. MR 1857599, DOI 10.1006/jath.2001.3584
- Jungho Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM J. Math. Anal. 33 (2001), no. 4, 946–958. MR 1885291, DOI 10.1137/S0036141000373811
Bibliographic Information
- Ronald DeVore
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Email: rdevore@math.tamu.edu
- Amos Ron
- Affiliation: Computer Science Department, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Email: amos@cs.wisc.edu
- Received by editor(s): February 17, 2008
- Published electronically: July 15, 2010
- Additional Notes: This work was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113; the Army Research Office Contracts DAAD 19-02-1-0028, W911NF-05-1-0227, and W911NF-07-1-0185; the National Institute of General Medical Sciences under Grant NIH-1-R01-GM072000-01; and the National Science Foundation under Grants DMS-0221642, DMS-9872890, DMS-354707, DBI-9983114, ANI-0085984, DMS-0602837 and DMS-0915231
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 362 (2010), 6205-6229
- MSC (2010): Primary 41A15, 41A46, 41A25, 68T05
- DOI: https://doi.org/10.1090/S0002-9947-2010-05070-6
- MathSciNet review: 2678971