Completely multiplicative functions taking values in $\{-1,1\}$
HTML articles powered by AMS MathViewer
- by Peter Borwein, Stephen K. K. Choi and Michael Coons
- Trans. Amer. Math. Soc. 362 (2010), 6279-6291
- DOI: https://doi.org/10.1090/S0002-9947-2010-05235-3
- Published electronically: July 14, 2010
Abstract:
Define the Liouville function for $A$, a subset of the primes $P$, by $\lambda _{A}(n) =(-1)^{\Omega _A(n)}$, where $\Omega _A(n)$ is the number of prime factors of $n$ coming from $A$ counting multiplicity. For the traditional Liouville function, $A$ is the set of all primes. Denote \[ L_A(x):=\sum _{n\leq x}\lambda _A(n)\quad \mbox {and}\quad R_A:=\lim _{n\to \infty }\frac {L_A(n)}{n}.\] It is known that for each $\alpha \in [0,1]$ there is an $A\subset P$ such that $R_A=\alpha$. Given certain restrictions on the sifting density of $A$, asymptotic estimates for $\sum _{n\leq x}\lambda _A(n)$ can be given. With further restrictions, more can be said. For an odd prime $p$, define the character–like function $\lambda _p$ as $\lambda _p(pk+i)=(i/p)$ for $i=1,\ldots ,p-1$ and $k\geq 0$, and $\lambda _p(p)=1$, where $(i/p)$ is the Legendre symbol (for example, $\lambda _3$ is defined by $\lambda _3(3k+1)=1$, $\lambda _3(3k+2)=-1$ ($k\geq 0$) and $\lambda _3(3)=1$). For the partial sums of character–like functions we give exact values and asymptotics; in particular, we prove the following theorem.
Theorem. If $p$ is an odd prime, then \[ \max _{n\leq x} \left |\sum _{k\leq n}\lambda _p(k)\right | \asymp \log x.\]
This result is related to a question of Erdős concerning the existence of bounds for number–theoretic functions. Within the course of discussion, the ratio $\phi (n)/\sigma (n)$ is considered.
References
- Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations. MR 1997038, DOI 10.1017/CBO9780511546563
- Paul T. Bateman and Harold G. Diamond, Analytic number theory, Monographs in Number Theory, vol. 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. An introductory course. MR 2111739, DOI 10.1142/5605
- Peter Borwein, Stephen Choi, Brendan Rooney, and Andrea Weirathmueller (eds.), The Riemann hypothesis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2008. A resource for the afficionado and virtuoso alike. MR 2463715, DOI 10.1007/978-0-387-72126-2
- Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, Sign changes in sums of the Liouville function, Math. Comp. 77 (2008), no. 263, 1681–1694. MR 2398787, DOI 10.1090/S0025-5718-08-02036-X
- P. Erdős, Problems and results on combinatorial number theory, A survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971) North-Holland, Amsterdam, 1973, pp. 117–138. MR 0360509
- P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
- Andrew Granville and K. Soundararajan, Motivating the multiplicative spectrum, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 1–15. MR 1691308
- Andrew Granville and K. Soundararajan, The spectrum of multiplicative functions, Ann. of Math. (2) 153 (2001), no. 2, 407–470. MR 1829755, DOI 10.2307/2661346
- Andrew Granville and K. Soundararajan, Decay of mean values of multiplicative functions, Canad. J. Math. 55 (2003), no. 6, 1191–1230. MR 2016245, DOI 10.4153/CJM-2003-047-0
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- C. B. Haselgrove, A disproof of a conjecture of Pólya, Mathematika 5 (1958), 141–145. MR 104638, DOI 10.1112/S0025579300001480
- A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford 8 (1937), 255–266.
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Edmund Landau, Neuer Beweis der Gleichung $\sum \frac {\mu (k)}{k}=0$, Inaugural-Dissertation, Berlin, 1899.
- Edmund Landau, Über die Äquivalenz zweier Hauptsätze der analytischen Zahlentheorie, Wien. Sitz. 120 (1911), 973–988.
- Nathan Ng, The distribution factor of values of the summatory function of the Möbius function, Notes of the Canad. Math. Soc. 34 (2002), no. 5, 5–8.
- Nathan Ng, The distribution of the summatory function of the Möbius function, Proc. London Math. Soc. (3) 89 (2004), no. 2, 361–389. MR 2078705, DOI 10.1112/S0024611504014741
- Hans Carl Friedrich von Mangoldt, Beweis der Gleichung $\sum _{k=0}^\infty \frac {\mu (k)}{k}=0$, Proc. Royal Pruss. Acad. of Sci. of Berlin (1897), 835–852.
- Aurel Wintner, The Theory of Measure in Arithmetical Semi-Groups, publisher unknown, Baltimore, Md., 1944. MR 0015083
- E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411–467 (German). MR 223318, DOI 10.1007/BF02280301
Bibliographic Information
- Peter Borwein
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Email: pborwein@cecm.sfu.ca
- Stephen K. K. Choi
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Email: kkchoi@math.sfu.ca
- Michael Coons
- Affiliation: The Fields Institute, 222 College Street, Toronto, Ontario, Canada M5T 3J1
- MR Author ID: 857151
- Email: mcoons@math.uwaterloo.ca
- Received by editor(s): June 13, 2008
- Published electronically: July 14, 2010
- Additional Notes: This research was supported in part by grants from NSERC of Canada and MITACS
- © Copyright 2010 by the authors
- Journal: Trans. Amer. Math. Soc. 362 (2010), 6279-6291
- MSC (2000): Primary 11N25, 11N37; Secondary 11A15
- DOI: https://doi.org/10.1090/S0002-9947-2010-05235-3
- MathSciNet review: 2678974