$L^p$ estimates and asymptotic behavior for finite energy solutions of extremals to Hardy-Sobolev inequalities
HTML articles powered by AMS MathViewer
- by Dimiter Vassilev
- Trans. Amer. Math. Soc. 363 (2011), 37-62
- DOI: https://doi.org/10.1090/S0002-9947-2010-04850-0
- Published electronically: August 31, 2010
- PDF | Request permission
Abstract:
Motivated by the equation satisfied by the extremals of certain Hardy-Sobolev type inequalities, we show sharp $L^q$ regularity for finite energy solutions of p-Laplace equations involving critical exponents and possible singularity on a sub-space of $\mathbb {R}^n$, which imply asymptotic behavior of the solutions at infinity. In addition, we find the best constant and extremals in the case of the considered $L^2$ Hardy-Sobolev inequality.References
- Aomar Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728 (French, with English summary). MR 920052
- Giuseppe Bertin, Dynamics of galaxies, Cambridge University Press, Cambridge, 2000. MR 1766083
- Haïm Brézis and Tosio Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (9) 58 (1979), no. 2, 137–151. MR 539217
- Marino Badiale and Enrico Serra, Critical nonlinear elliptic equations with singularities and cylindrical symmetry, Rev. Mat. Iberoamericana 20 (2004), no. 1, 33–66. MR 2076771, DOI 10.4171/RMI/379
- Marino Badiale and Gabriella Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal. 163 (2002), no. 4, 259–293. MR 1918928, DOI 10.1007/s002050200201
- Beals, R., & Ni, Y., Private Communication, March 2005.
- Ciotti, L., Lecture Notes on Stellar Dynamics, Scuola Normale Superiore di Pisa editore, 2001.
- S. Chandrasekhar, Principles of stellar dynamics, Dover Publications, Inc., New York, 1960. Enlarged ed. MR 0115776
- L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259–275. MR 768824
- Florin Catrina and Zhi-Qiang Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), no. 2, 229–258. MR 1794994, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
- Luis A. Caffarelli, Basilis Gidas, and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271–297. MR 982351, DOI 10.1002/cpa.3160420304
- Jesús Ildefonso Díaz and José Evaristo Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 12, 521–524 (French, with English summary). MR 916325
- Henrik Egnell, Asymptotic results for finite energy solutions of semilinear elliptic equations, J. Differential Equations 98 (1992), no. 1, 34–56. MR 1168970, DOI 10.1016/0022-0396(92)90103-T
- S. Filippas, V. G. Maz’ya, and A. Tertikas, Sharp Hardy-Sobolev inequalities, C. R. Math. Acad. Sci. Paris 339 (2004), no. 7, 483–486 (English, with English and French summaries). MR 2099546, DOI 10.1016/j.crma.2004.07.023
- Glaser, V., Martin, A., Grosse, H., & Thirring, W., A family of optimal conditions for absence of bound states in a potential. In: Studies in Mathematical Physics. Lieb, E.H., Simon, B., Wightman, A.S. (eds.), pp. 169–194, Princeton University Press, 1976.
- Nicola Garofalo and Ermanno Lanconelli, Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), no. 1, 71–98. MR 1160903, DOI 10.1512/iumj.1992.41.41005
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
- Nicola Garofalo and Dimiter Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann. 318 (2000), no. 3, 453–516. MR 1800766, DOI 10.1007/s002080000127
- Nicola Garofalo and Dimiter Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), no. 3, 411–448. MR 1813232, DOI 10.1215/S0012-7094-01-10631-5
- N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5703–5743. MR 1695021, DOI 10.1090/S0002-9947-00-02560-5
- Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. MR 717827, DOI 10.2307/2007032
- Man Chun Leung, Asymptotic behavior of positive solutions of the equation $\Delta _g u+Ku^p=0$ in a complete Riemannian manifold and positive scalar curvature, Comm. Partial Differential Equations 24 (1999), no. 3-4, 425–462. MR 1683046, DOI 10.1080/03605309908821430
- Chang-Shou Lin, Estimates of the scalar curvature equation via the method of moving planes. III, Comm. Pure Appl. Math. 53 (2000), no. 5, 611–646. MR 1737506, DOI 10.1002/(SICI)1097-0312(200005)53:5<611::AID-CPA4>3.0.CO;2-N
- Peter Lindqvist, On the equation $\textrm {div}\,(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505, DOI 10.1090/S0002-9939-1990-1007505-7
- E. Lanconelli and F. Uguzzoni, Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 1, 139–168 (English, with Italian summary). MR 1618972
- Chang-Shou Lin and Zhi-Qiang Wang, Symmetry of extremal functions for the Caffarrelli-Kohn-Nirenberg inequalities, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1685–1691. MR 2051129, DOI 10.1090/S0002-9939-04-07245-4
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- G. Mancini and K. Sandeep, Cylindrical symmetry of extremals of a Hardy-Sobolev inequality, Ann. Mat. Pura Appl. (4) 183 (2004), no. 2, 165–172. MR 2075471, DOI 10.1007/s10231-003-0084-2
- G. Mancini, I. Fabbri, and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator, J. Differential Equations 224 (2006), no. 2, 258–276. MR 2223717, DOI 10.1016/j.jde.2005.07.001
- G. O. Okikiolu, Aspects of the theory of bounded integral operators in $L^{p}$-spaces, Academic Press, London-New York, 1971. MR 0445237
- Gerhard Rein, Stationary and static stellar dynamic models with axial symmetry, Nonlinear Anal. 41 (2000), no. 3-4, Ser. A: Theory Methods, 313–344. MR 1762148, DOI 10.1016/S0362-546X(98)00280-6
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
- James Serrin, Singularities of solutions of nonlinear equations, Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I., 1965, pp. 68–88. MR 0186903
- Simone Secchi, Didier Smets, and Michel Willem, Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), no. 10, 811–815 (English, with English and French summaries). MR 1990020, DOI 10.1016/S1631-073X(03)00202-4
- James Serrin and H. F. Weinberger, Isolated singularities of solutions of linear elliptic equations, Amer. J. Math. 88 (1966), 258–272. MR 201815, DOI 10.2307/2373060
- Dimiter Vassilev, Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups, Pacific J. Math. 227 (2006), no. 2, 361–397. MR 2263021, DOI 10.2140/pjm.2006.227.361
- —, Ph. D. Dissertation, Purdue University, 2000.
- Qi S. Zhang, A Liouville type theorem for some critical semilinear elliptic equations on noncompact manifolds, Indiana Univ. Math. J. 50 (2001), no. 4, 1915–1936. MR 1889088, DOI 10.1512/iumj.2001.50.2082
Bibliographic Information
- Dimiter Vassilev
- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131 – and – Department of Mathematics, University of California, Riverside, Riverside, California 92521
- Email: vassilev@math.unm.edu
- Received by editor(s): December 12, 2006
- Received by editor(s) in revised form: April 25, 2008
- Published electronically: August 31, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 37-62
- MSC (2000): Primary 35J65, 35B05
- DOI: https://doi.org/10.1090/S0002-9947-2010-04850-0
- MathSciNet review: 2719670