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GEVREY SOLVABILITY AND GEVREY REGULARITY

IN DIFFERENTIAL COMPLEXES

ASSOCIATED TO LOCALLY INTEGRABLE STRUCTURES

PAULO A. S. CAETANO AND PAULO D. CORDARO

Abstract. In this work we study some properties of the differential complex
associated to a locally integrable (involutive) structure acting on forms with
Gevrey coefficients. Among other results we prove that, for such complexes,
Gevrey solvability follows from smooth solvability under the sole assumption
of a regularity condition. As a consequence we obtain the proof of the Gevrey
solvability for a first order linear PDE with real-analytic coefficients satisfying
the Nirenberg-Treves condition (P).

1. Introduction

Associated to any involutive structure over a smooth manifold (that is, a complex
subbundle of its complexified tangent bundle satisfying the bracket condition) there
is canonically associated a complex of (first order) differential operators (cf. [T2,
p. 32]). For instance, in the classical cases of real, complex and CR structures,
this association gives, respectively, the well-known de Rham, Dolbeault and the
∂b complexes, for which the study of solvability has already achieved the status
of classical questions in the theory of linear PDEs and multi-dimensional complex
analysis.

Within this framework a natural question is then the local Gevrey solvability
for the differential complex associated to an arbitrary Gevrey locally integrable
structure. A pioneering study in this direction can be found in [Mi], where the
author considers, via L2-weighted estimates, the (micro-local) Gevrey solvability
for the ∂b-complex on hypersurfaces in Cn.

In the present work we return to this question but adopt a more abstract view:
our main hypothesis is that, for some fixed degree, (weak)-classical solvability occurs
and from this we conclude that Gevrey solvability is also true (cf. Theorem 5.1
below). For the proof we use two main tools: the ultra-differential operators of class
(p!s) introduced by H. Komatsu [Ko] in conjunction with a notion of Gevrey classes
within the concept of a hypo-analytic structure, which we introduce in Section 2.

As a consequence of this result we prove that, for any s > 1, any first order linear
PDE with analytic coefficients Pu = f satisfying the Nirenberg-Treves condition
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(P) has local solutions u ∈ Gs for every f ∈ Gs, a result that we believe is new
(see also [LL] and Remark 6.1 below).

Also, as a byproduct of the tools we have developed in order to prove Theorem
5.1, we obtain a representation formula for closed (in the sense of the differential
complex under study) currents and, in the final section, a sufficient condition for
Gevrey hypoellipticity for zero degree currents. This latter result can be considered
as a preliminary step of the study of further questions to which we hope to return.

We emphasize that all results we obtain are consequences of a solvability and of
a regularity result proved for a class of ultra-differentiable operators of class (p!s)
that are elliptic in a very strong sense (cf. Definition 3.1 and Propositions 3.1 and
3.2). The main aspect of these operators is that they commute with our differential
complex, a property that simplifies the arguments very much.

This paper is an extension of [C] and its roots lay in the work [Co], where a class
of infinite order operators introduced by Kaneko [Ka] was adapted in order to obtain
representation formulas for hyperfunction solutions in hypo-analytic structures.

Finally, we wish to thank Professor F. Treves for his suggestions and interest in
this work.

2. Preliminaries: Gevrey hypo-analytic structures

Let Ω be an open subset of RN . A (corank zero) hypo-analytic structure on Ω
(cf. [T2]) is a collection of ordered pairs T = {(U,Z)}, where U ⊂ Ω is an open
subset of Ω and Z = (Z1, . . . , ZN ) : U −→ CN is a smooth mapping, such that the
following conditions are satisfied:

(1) Ω =
⋃

(U,Z)∈T
U .

(2) If (U,Z) ∈ T, then the differentials dZ1, . . . , dZN are C-linearly indepen-
dent at every point of U .

(3) If (U,Z), (U ′, Z ′) ∈ T are such that U ∩U ′ �= ∅, then (U,Z) and (U ′, Z ′) are
biholomorphically related ; that is, there are open subsets U ⊃ Z(U ∩ U ′),
U ′ ⊃ Z ′(U ∩ U ′) of CN and a biholomorphism H : U → U ′ such that
Z ′ = H ◦ Z in U ∩ U ′.

(4) If U � is an open subset of Ω and Z� = (Z�
1, . . . , Z

�
N ) : U � −→ C

N is a
smooth mapping such that

• dZ�
1, . . . , dZ

�
N are C-linearly independent at every point of U �,

• (U �, Z�) and (U,Z) are biholomorphically related for every (U,Z) ∈ T

with U ∩ U � �= ∅,
then (U �, Z�) ∈ T.

Any pair (U,Z) ∈ T is called a hypo-analytic chart related to T.
If Ω′ ⊂ Ω is open, then the family T|Ω′

.
= {(U ∩Ω′, Z|U∩Ω′) : (Z,U) ∈ T} defines

a hypo-analytic structure on Ω′, called the hypo-analytic structure on Ω′ induced
by T.

Let Ω′ ⊂ Ω be open. A function u ∈ C∞(Ω′) is said to be T-hypo-analytic if
given any point p ∈ Ω′ and given any hypo-analytic chart (U,Z) ∈ T such that
p ∈ U , then u = H ◦Z near p, where H is a holomorphic map near Z(p). We shall
denote by AT(Ω

′) the space of all T-hypo-analytic functions on Ω′. It is clear that
Ω′ 
→ AT(Ω

′) defines a sheaf, called the sheaf of germs of T-hypo-analytic functions
on Ω.

It is easily seen that any family T0 = {(U,Z)} satisfying properties (1), (2) and
(3) can be enlarged T0 ⊂ T to a uniquely defined hypo-analytic structure on Ω.
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In the following we assume given a hypo-analytic structure T on Ω.
Let (U,Z) ∈ T. We introduce a set of N linearly independent, pairwise commut-

ing complex vector fields M1, . . . ,MN on U , defined by the relations

dZk(Mj) = MjZk = δjk .

Given V � U , s ≥ 1 and h > 0 we shall denote by Gs,h(V ;M) the space of all
f ∈ C∞(V ) such that, for some C > 0,

(1) sup
V

|Mαf | ≤ Ch|α||α|!s, α ∈ Z
N
+ .

Here, of course, we are setting Mα = Mα1
1 . . .MαN

N .
The infimum of the constants C for which (1) is valid defines a norm on

Gs,h(V ;M) which turns it into a Banach space.

Example 2.1. If (x1, . . . , xN ) denote the coordinates in R
N and if Z denotes the

inclusion map RN ↪→ CN , then the corresponding vector fields for the hypo-analytic
chart (RN , Z) are ∂/∂xj , j = 1, . . . , N . Hence the associated spaces, for V � RN ,

are the standard Gevrey spaces Gs,h(V ,M) = Gs,h(V ).

Before we proceed we just state a result whose proof can be easily adapted from
an argument in ([Ko, p. 41]).

Proposition 2.1. Let (U,Z) ∈ T. Then given V � U with smooth boundary, s ≥ 1
and h < h′ the inclusion

Gs,h(V ;M) ↪→ Gs,h′
(V ;M)

is compact.

We now introduce the main object of the present study.

Definition 2.1. Let s ≥ 1. A (corank zero) Gevrey hypo-analytic structure of
order s on Ω is a hypo-analytic structure T on Ω such that, for any hypo-analytic
chart (U,Z) ∈ T, the mapping Z : U → CN is Gevrey of order s.

If T is a Gevrey hypo-analytic structure of order one, then T is nothing else
than the standard real-analytic structure on Ω. If otherwise for some (U,Z) ∈ T

we have Z real-analytic, then T|U is the standard real-analytic structure on U . We
also have

Proposition 2.2. Let T be a Gevrey hypo-analytic structure of order s on Ω. Then
for any open subset Ω′ of Ω, the standard Gevrey space Gs(Ω′) equals the space of all
f ∈ C∞(Ω′) such that, for all V � Ω′ with compact closure contained in the domain
of a hypo-analytic chart (U,Z) ∈ T, there exists h > 0 such that f |V ∈ Gs,h(V ;M).

The proof follows simply from the fact that, in this case, each Mj has Gevrey
coefficients of order s (cf. [Ro]).

3. Ultradifferential operators of class (p!s)

Let P (ζ) =
∑

α≥0 aαζ
α be an entire function in CN . According to [Ko] the

function P (ζ) defines an ultradifferential operator of class (p!s), s > 1, if there are
constants C > 0, L > 0 such that

(2) |aα| ≤ CL|α|/|α|!s.
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If (U,Z) is a hypo-analytic chart belonging to some hypo-analytic structure, we
associate to each such P (ζ) an operator P (M) defined, at least formally, by the
expression

P (M) =
∑

α≥0

aαM
α .

Lemma 3.1. Let T be a hypo-analytic structure on Ω, let (U,Z) ∈ T, let P (ζ)
define an ultradifferential operator of class (p!s) as above and let h > 0. Then if
L ≤ 1/(2s+1h), we have a continuous linear map

P (M) : Gs,h(V ;M) −→ Gs,2sh(V ;M),

for any V � U .

Proof. Let f ∈ Gs,h(V ;M) satisfy (1). With P (ζ) as above we have

MβP (M)f =
∑

γ≥0

aγM
γ+βf.

Hence, in V we can estimate

|MβP (M)f | ≤ C
∑

γ≥0

L|γ|h|γ|+|β||γ|!−s(|γ|+ |β|)!s

= Ch|β||β|!s
∑

γ≥0

L|γ|h|γ|(|γ|!−s(|γ|+ |β|)!s)/|β|!s

≤ C(2sh)|β||β|!s
∑

γ≥0

(2sLh)|γ|. �

Remark 3.1. If P (ζ) defines an ultradifferential operator of class (p!s), then the same
is true for Pr(ζ) = P (rζ), r > 0. Moreover Pr(ζ) satisfies (2) for rL substituted for
L.

If P (ζ) defines an ultradifferential operator of class (p!s), then (2) implies the
following property, for any 1 ≤ s′ < s: given ε > 0 there is C > 0 such that

(3) |aα| ≤ Cε|α|/|α|!s′ , α ∈ Z
N
+ .

In particular, applying (3) when s′ = 1 gives the following result:

Lemma 3.2. Let T be a hypo-analytic structure on Ω. Let (U,Z) ∈ T and let P (ζ)
define an ultradifferential operator of class (p!s), with s > 1. Then the operator
P (M) defines an endomorphism of AT(U).

Property (3) also allows us to extend the action of P (M) to a much larger space
in a more restricted situation.

We assume that T is a Gevrey hypo-analytic structure of order s0 > 1 and
let P (ζ) define an ultradifferential operator of class (p!s) with s > s0. Thanks
to property (3) applied with s0 substituted for s′ it is easily seen that, for any
V ⊂ U open, there are well-defined endomorphisms P (M) : Gs0(V ) −→ Gs0(V ),
P (M) : Gs0

c (V ) −→ Gs0
c (V ). Moreover, if h is chosen as in Lemma 3.1 and if D′

s0
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denotes the sheaf of ultra-distributions of order s0, we have a commutative diagram

Gs,h(V ;M) ↪→ D′
s0(V )

⏐
⏐
�P (M)

⏐
⏐
�P (M)

Gs,2sh(V ;M) ↪→ D′
s0(V ) ,

where the horizontal arrows are induced by the injection C∞(V ) ↪→ D′
s0(V ) defined

by

f 
→
(

ψ 
→
∫

V

f(x)ψ(x) dZ(x)

)

, f ∈ C∞(V ), ψ ∈ Gs0
c (V ),

and P (M) : D′
s0(V ) −→ D′

s0(V ) is defined by duality. Here we are writing dZ
.
=

dZ1 ∧ . . . ∧ dZN .1

We shall now embark upon the proof of two basic results for this work. We recall
that we have fixed a Gevrey hypo-analytic structure T of order s0 > 1 over Ω. Let
(U,Z) ∈ T and let p ∈ U . Composing with a translation allows us to assume
that Z(p) = 0. Next, replacing Z by A ◦ Z, where A is a non-singular N × N
complex matrix, allows us also to assume that DpZ is the identity. Hence we can
contract U around p in order to ensure that U is the domain of a coordinate system
(x1, . . . , xN ) centered at p such that we can write

(4) Z(x) = x+ iΦ(x),

where Φ : U → R
N is a Gevrey map of order s0 and satisfies

(5) Φ(0) = 0, D0Φ = 0.

Contracting further U around p (= 0) we can assume that

(6) |Φ(x)− Φ(y)| ≤ 1

2
|x− y|, x, y ∈ U.

A consequence of property (6) is that we can consider the approximation scheme
given by the family of entire functions

(7) Eε[ψ](z) =
1

(2π)N

∫

RN

∫

U

ei(z−Z(y))·ξ−ε|ξ|2ψ(y) dZ(y) dξ ,

where ψ ∈ C∞
c (U).

We have

(8) Eε[ψ] ◦ Z ε→0+−→ ψ in C∞(U).

Next we introduce a class of “elliptic” ultradifferential operators of class (p!s).

Definition 3.1. Let P (ζ) define an ultradifferential operator of class (p!s). We
shall say that P (ζ) satisfies property (e) if there are constants σ > 0, c > 0 such
that

(9) |P (ζ)| ≥ c exp{c|ζ|1/s}, ζ ∈ Γσ,

where we have written Γσ
.
= {ζ = ξ + iη : ξ, η ∈ RN , |η| ≤ σ|ξ|}.

1Note the integration by parts formulae
∫

V
(Mjϕ)(x)χ(x) dZ(x) = −

∫

V
ϕ(x) (Mjχ)(x) dZ(x), j = 1, . . . , N,

which hold for any pair of functions ϕ, χ ∈ C1(V ), one of them with compact support (cf. [T2, p.
79]).
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(9) is easily seen to be equivalent to the existence of a constant γ > 0 such that

(10) |P (ζ)| ≥ γp+1|ζ|p
p!s

, p ∈ Z+, ζ ∈ Γσ.

We are now in a position to state the two main tools referred to above. In their
statements we tacitly assume that we are working in the hypo-analytic chart (U,Z),
where Z is given by (4) and satisfies (5) and (6).

Proposition 3.1. Let P (iζ) define an ultradifferential operator of class (p!s), where
s > s0, satisfying property (e). Given an open neighborhood V ⊂ U of the origin,
there exist h > 0 and another open neighborhood W � V of the origin such that for
every f ∈ C∞(V ) there is u ∈ Gs,h(W ;M) solving

P (M)u = f in W.

Proof. We first select an open neighborhood V1 ⊂ V of the origin such that

(11) |Φ(x)− Φ(y)| ≤ σ

2
|x− y|, x, y ∈ V1,

where σ is given as in the definition of property (e) and assumed < 1. This is
possible thanks again to (5).

Let f ∈ C∞(V ) and take ψ ∈ C∞
c (V1), ψ = 1 in an open neighborhood W of the

origin. We assume that W has a smooth boundary. Thanks to the fact that P (iζ)
satisfies property (e) we can define the family of entire functions

(12) uε(z) =
1

(2π)N

∫

RN

∫

U

1

P (iξ)
ei(z−Z(y))·ξ−ε|ξ|2ψ(y)f(y) dZ(y) dξ .

It is easily seen that

(13) P (M)(uε ◦ Z) = Eε[ψf ] ◦ Z

and consequently (8) gives

(14) P (M) [uε ◦ Z]
ε→0+−→ ψf

in C∞(V ).
Next we must estimate uε(Z(x)). For this we first perform an integration by

parts in the y-integration. For any q ∈ Z+ and any α ∈ ZN
+ and x ∈ W we have

[Mα(uε ◦ Z)] (x)(15)

=
1

(2π)N

∫

RN

∫

U

(iξ)α

P (iξ)
ei(Z(x)−Z(y))·ξ−ε|ξ|2 (1−ΔM)q(ψf)(y)

(1 + |ξ|2)q dZ(y) dξ ,

where we have written ΔM = M2
1 + . . .+M2

N .
Next we change the ξ-integral to an integration over the chain

(16) ξ 
→ ζ
.
= ξ + i

3σ

4

x− y

|x− y| |ξ|.

Denote by Q(x, y, ξ) the real part of the exponent after the change ξ 
→ ζ.
Writing

〈ζ〉2 = ζ21 + . . .+ ζ2N
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we obtain, thanks to (11),

Q(x, y, ξ) = −3σ

4
|x− y| |ξ| − (Φ(x)− Φ(y)) · ξ − εRe 〈ζ〉2

≤ −3σ

4
|x− y| |ξ| − (Φ(x)− Φ(y)) · ξ − ε

7σ2

16
|ξ|2

≤ −3σ

4
|x− y| |ξ|+ σ

2
|x− y| |ξ|

≤ 0.

Since moreover

∣
∣1 + 〈ζ〉2

∣
∣ ≥ 1 +

7σ2

16
|ξ|2, |ξ| ≤ |ζ| ≤

(

1 +
3σ

4

)

|ξ|

and since also the Jacobian of the transformation ξ 
→ ζ is homogeneous of degree
0 in ξ, (15) and estimates (10) give, for x ∈ W ,

(17) | [Mα(uε ◦ Z)] (x)| ≤ C |α|+1|α|!s
∫

RN

∫

U

|(1−ΔM)q(ψf)(y)|
(1 + |ξ|2)q dy dξ ,

where C > 0 is a suitable constant depending only on γ and σ but not on ε.
Choosing q > N/2 we conclude that uε ◦ Z is uniformly bounded in Gs,C(W ;M)
and consequently, by Proposition 2.1, given h > C there is a sequence εj → 0 such

that uεj ◦ Z → u in Gs,h(W ;M).

Since finally both convergences uεj ◦Z → u, P (M)
[
(uεj ) ◦ Z

]
−→ f take place in

D′
s0(W ) we conclude that P (M)u = f in D′

s0(W ), which concludes the proof. �

Remark 3.2. The same conclusion of Proposition 3.1 holds if we only assume that
f ∈ D′(V ). Indeed, first we observe that the preceding proof holds if we only
assume f ∈ Cα(V ), with α > N . Now if u ∈ Gs,h(W,M) solves P (M)u = f , then
P (M)Δp

Mu = Δp
Mf for any p ∈ Z+ and moreover Δp

Mu ∈ Gs,hp(W,M) for some
hp > 0. Our claim then follows from a local structure theorem proved in [T2,
p. 102].

Next we state and prove a regularity result:

Proposition 3.2. Let P (iζ) define an ultradifferential operator of class (p!s), with
s > s0, satisfying property (e). Given an open neighborhood V ⊂ U there is an open
neighborhood D of the origin in CN , with Z−1(D) � V , such that the following
holds:

• For every v ∈ C∞(V ) satisfying P (M)v = 0 there is G ∈ O(D) such that
v = G ◦ Z in Z−1(D).

In particular any solution v ∈ C∞(V ) of the equation P (M)v = 0 is T-hypo-
analytic in a fixed neighborhood of the origin.

Proof. We start by fixing a neighborhood V1 as at the beginning of the proof of
Proposition 3.1 and let v ∈ C∞(V ) satisfy P (M)v = 0. We have

(18)

∫

V1

v(y) [P (−M)ψ](y) dZ(y) = 0, ψ ∈ Gs0
c (V1).
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Let V2 � V1 be another neighborhood of the origin and let ϕ ∈ Gs0
c (V1) be

identically equal to one in V2. If H ∈ O(CN ), then

P (−M)[ϕ (H ◦ Z)](19)

= ϕP (−M)(H ◦ Z) +
∑

α≥0

(−1)|α|aα
∑

β≤α,|β|>0

(
α
β

)

MβϕMα−β(H ◦ Z).

Now let δ > 0 be a small number and define Kδ as the set of all vectors in CN

whose Euclidean distance to Z(V1 \ V2) is ≤ δ. Noticing that

Mα−β(H ◦ Z) = (∂α−β
z H) ◦ Z,

Cauchy estimates give

sup
V1\V2

|Mα−β(H ◦ Z)| ≤ |α− β|!
δ|α−β| sup

Kδ

|H|.

Hence (19) in conjunction with (2) gives, for some constant C > 0,
∣
∣
∣
∣

∫

V1

v(y) {P (−M)[ϕ (H ◦ Z)]− ϕP (−M)(H ◦ Z)} (y) dZ(y)

∣
∣
∣
∣

≤ sup
Kδ

|H|
∑

α≥0

C |α|+1

δ|α||α|!s−s0

∑

β≤α,|β|>0

(
α
β

)
|β|!s0 |α− β|!

|α|!s0

≤ sup
Kδ

|H|
∑

α≥0

2|α|C |α|+1

δ|α||α|!s−s0
.

Hence we have reached the following conclusion: if v ∈ C∞(V ) satisfies P (M)v =
0 and if V2, V1 and ϕ are chosen as in the preceding discussion, then for every δ > 0
small there is a constant Cδ > 0 such that

(20)

∣
∣
∣
∣

∫

V1

v(y)ϕ(y) [P (−M)(H ◦ Z)](y) dZ(y)

∣
∣
∣
∣ ≤ Cδ sup

Kδ

|H| .

We then apply (20) with H replaced by

w 
→ Hε(z, w)
.
=

1

(2π)N

∫

RN

1

P (−iξ)
ei(z−w)·ξ−ε|ξ|2 dξ,

with z ∈ CN regarded as a parameter and ε > 0. It is clear that

P (−M)[Hε(z, Z(y)] =
1

(2π)N

∫

RN

ei(z−Z(y))·ξ−ε|ξ|2 dξ

and then we obtain

(21) |Eε[ϕv](z)| ≤ Cδ sup
w∈Kδ

|Hε(z, w)|

with Cδ independent of both z and ε. In order to conclude the proof of the propo-
sition we must show that there are D, an open neighborhood of the origin in CN ,
with Z−1(D) ⊂ V2, and δ > 0 small such that

(22) sup
w∈Kδ

|Hε(z, w)| ≤ const., z ∈ D,



GEVREY SOLVABILITY AND REGULARITY 193

uniformly in ε > 0. Indeed if this is so, (21) would imply the existence of a sequence
εj → 0 and of a function G ∈ O(D) such that

Eεj [ϕv](z) −→ G in O(D).

From (8) we have v = G ◦ Z in Z−1(D), whence our claim.
We are then left with the proof of (22). We write w ∈ Kδ in the form w =

Z(y)+w′, y ∈ V 1 \V2, |w′| ≤ δ and also z in the form z = Z(x)+ iγ, with γ ∈ R
N .

As in the proof of Proposition 3.1, in the integral that defines Hε we perform the
change of variables (16). Denoting now by Q1(z, w, ξ) the real part of the exponent
obtained after the change ξ 
→ ζ we obtain, as before,

Q1(z, w, ξ) ≤ −σ

2
|x− y||ξ|+O((|γ|+ |w′|)|ξ|) .

It is then clear that if D and δ > 0 are chosen appropriately small we obtain, for
some constant c > 0,

Q1(z, w, ξ) ≤ −c|ξ|
when z ∈ D, w ∈ Kδ, ξ ∈ R

N and then (22) follows from the fact that P (−iζ) has
a strictly positive lower bound in Γσ .

The proof of Proposition 3.2 is now complete. �

Remark 3.3. It is easily seen that the conclusion of Proposition 3.2 remains true if
we assume that v ∈ D′(V ).

Remark 3.4. The conclusion of Proposition 3.1 remains true even if we assume that
v ∈ D′

s0(V ). In this case it is necessary to extend the argument a little further (in
particular we must know that the approximation in (8) occurs in Gs if ψ is Gevrey
of order s > 1, a result proved in [Co]). The details are left to the interested reader.

We conclude this section with an example. Consider the following entire function:

Qs(ζ) =
∞∏

p=1

(

1− 1

p2s
[
ζ21 + . . .+ ζ2N

]
)

.

It is proved in [Ko] that Qs(iζ) defines indeed an ultradifferential operator of class
(p!s). Moreover we can prove

Lemma 3.3. Qs(iζ) satisfies property (e). More precisely, given σ ∈ ]0, 1[ and
setting σ0 = {(1− σ2)/(1 + σ2)}1/2, then

|Qs(iζ)| ≥
|ζ|pσp

0

p!s
, p ∈ Z+, ζ ∈ Γσ.

Proof. First we observe that if ζ = ξ + iη ∈ Γσ, with ξ, η real, then

Re 〈ζ〉2 = |ξ|2 − |η|2 ≥ (1− σ2)|ξ|2 ≥ σ2
0 |ζ|2.

In particular we obtain
∣
∣
∣
∣1 +

1

q2s
〈ζ〉2

∣
∣
∣
∣ ≥ 1 +

1

q2s
Re 〈ζ〉2 ≥ 1 +

σ2
0

q2s
|ζ|2 ≥ 1

and then, for every p ∈ Z+,

|Qs(iζ)| ≥
p∏

q=1

(

1 +
σ2
0

q2s
|ζ|2

)

≥
p∏

q=1

σ0|ζ|
qs

= |ζ|pσp
0p!

−s. �
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4. Gevrey locally integrable structures

Let s ≥ 1. Given an open subset Ω of RN , a Gevrey locally integrable structure
of order s is a subbundle T′ of CT∗Ω of rank m which is locally generated by the
differentials of m Gevrey functions of order s. Here we are writing CT∗Ω to denote
the complexified cotangent bundle over Ω.

To every such structure there is canonically associated a complex of differential
operators whose study of the Gevrey local solvability is our main goal.

The invariant construction of this complex can be found in [T2, Section I.6] (see
also [BCH, chapter 7]). Here we recall its standard local representation in a suitable
choice of coordinates.

We assume that the origin belongs to Ω and write N = m + n. According to
[T2, p. 43] we can find a local system of coordinates (x, t) = (x1, . . . , xm, t1, . . . , tn)
centered at the origin and defined in a domain of the form U = B × Θ, where B
(resp. Θ) is an open ball centered at the origin in Rm (resp. Rn), as well as a Gs

mapping φ : Ω → Rm, φ = (φ1, . . . , φm) such that if we set

Zk(x, t) = xk + iφk(x, t), k = 1, . . . ,m,

then

(23) Z(0, 0) = 0, Zx(0, 0) = identity, detZx �= 0 in U

and

(24) {dZ1, . . . , dZm} span T′ over U .

We shall set Z(x, t) = (Z1(x, t), . . . , Zm(x, t)).
Next we introduce the complex vector fields X1, . . . ,Xm on U defined by the

relations

XkZ
 = δk
, Xktj = 0, k, � = 1, . . . ,m, j = 1, . . . , n,

and define

Lj =
∂

∂tj
− i

m∑

k=1

∂φk

∂tj
(x, t)Xk, j = 1, . . . , n.

Since LjZk = 0, j = 1, . . . , n, k = 1, . . . ,m it follows that the orthogonal of T′,
which is a subbundle of CTΩ of rank n, is spanned over U by the vector fields Lj .
Notice also that the vector fields X1, . . . ,Xm,L1, . . . ,Ln are linearly independent
and pairwise commuting.

Given V ⊂ U open and p ∈ {0, 1, . . . , n} we introduce the spaces

C∞(V ; Λp)
.
=

⎧
⎨

⎩
u =

∑

|J|=p

uJ (x, t) dtJ , uJ ∈ C∞(V )

⎫
⎬

⎭
,

where the standard notation for differential forms is employed.
We then define differential operators

(25) L : C∞(V,Λp) −→ C∞(V,Λp+1)

by the expression

(26) L(u) =
∑

|J|=p

n∑

j=1

(LjuJ )dtj ∧ dtJ .



GEVREY SOLVABILITY AND REGULARITY 195

Notice that [Lj , Lk] = 0 for all j and k implies that L2 = 0. Hence (25) defines
a complex of differential operators, which is referred to as the differential complex
associated to the locally integrable structure T′.

We can also introduce the spaces Gs(V,Λp) of all forms of the kind

(27) u =
∑

|J|=p

uJ (x, t) dtJ ,

where now uJ ∈ Gs(V ).2 Since the coefficients of the vector fields Lj are Gs we
obtain a new complex of differential operators

(28) L : Gs(V,Λp) −→ Gs(V,Λp+1).

5. Gevrey solvability

We return to the differential complex (25) and recall the following standard
definition. Fix q ∈ {1, . . . , n}.

Definition 5.1. We say that the system L is smoothly solvable at the origin in
degree q if for every open neighborhood U0 ⊂ U of the origin there is another such
neighborhood V0 ⊂ U0 such that the following is true: for every f ∈ C∞(U0; Λ

q)
satisfying Lf = 0 there is u ∈ C∞(V0; Λ

q−1) satisfying Lu = f in V0.

Remark 5.1. Smooth solvability follows from a much weaker solvability concept.
Indeed if for every open neighborhood U0 ⊂ U of the origin and for every f ∈
C∞(U0; Λ

q) satisfying Lf = 0 there is u ∈ D′(U0; Λ
q−1) solving Lu = f in some

neighborhood of the origin (which can depend on f), then L is smoothly solvable
at the origin in degree q. The proof follows from a category argument and from
[T2, p. 404].

This section will be devoted to the proof of the following theorem:

Theorem 5.1. Assume that T′ defines a Gevrey locally integrable structure of order
s0 > 1 and let s > s0. If L is smoothly solvable at the origin in degree q, for some
q ∈ {1, . . . , n}, then for every open neighborhood U1 ⊂ U there is another such
neighborhood V1 ⊂ U1 such that the following is true: for every f ∈ Gs(U1; Λ

q)
satisfying Lf = 0 there is u ∈ Gs(V1; Λ

q−1) satisfying Lu = f in V1.

Before we embark upon the proof we make some remarks. First we observe that
property (23) allows us to consider the Gevrey hypo-analytic structure T of class
s0 on U defined by the hypo-analytic chart (U, λ), where λ : U → CN is defined
by λ(x, t) = (Z(x, t), t). Although we cannot assert that D(Imλ) vanishes at the
origin, this drawback can be easily overcome. We consider the map λ� : U → CN

defined by

λ�(x, t) = (Z(x, t)− iφt(0) t, t).

Notice that λ� = A ◦ λ, with A a non-singular N ×N complex matrix, which gives
(U, λ�) ∈ T. Notice also that now we have λ�(0, 0) = 0 and D(Imλ�) = 0 at the
origin. The corresponding operators for the hypo-analytic chart (U, λ�) are given
by

X1, . . . ,Xm,L�
1, . . . ,L

�
n,

2More generally, if E(V ) is a subspace of D′(V ) we denote by E(V ; Λq) the space of all currents
of the form (27), where uJ ∈ E(V ) for all J .
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where

L�
j = Lj + i

m∑

k=1

∂φk

∂tj
(0, 0)Xk .

This discussion, together with Lemma 3.3, shows that we can take U sufficiently
contracted around the origin in order that the conclusions of both Propositions 3.1
and 3.2 hold for the ultradifferential operator of class (p!s) (s > s0) defined by

Qs,r(X,L�) =
∞∏

p=1

(

1− r2

p2s

[
X2

1 + . . .+X2
m + (L�

1)
2 + . . .+ (L�

n)
2
])

.

The key property of such operators is

(29) Qs,r(X,L�)Lj = LjQs,r(X,L�) in D′
s0(U)

for all j = 1, . . . , n, a consequence of the fact that each Lj commutes with all Xk,

L�

.

Proof of Theorem 5.1. In what follows we shall make the operator Qs,r(X,L�) to act
on forms by acting componentwise. Take U1 and f ∈ Gs(U1; Λ

q) as in the statement
and select an open neighborhood of the origin U0 � U1. By Lemma 3.1 and
Remark 3.1, it follows that there is r > 0 such that Qs,r(X,L�)f ∈ C∞(U0; Λ

q). By
hypothesis there exist an open neighborhood of the origin V0 ⊂ U0 (which depends
only on U0 and not on f) and w ∈ C∞(V0; Λ

q−1) such that Lw = Qs,r(X,L�)f in
V0 (notice that LQs,r(X,L�)f = 0 thanks to (29)). Next we apply Proposition 3.1:
there exist an open neighborhood of the origin W ⊂ V0 (depending only on V0 and
r), hr > 0 and v ∈ C∞(W ; Λq−1), with coefficients in Gs,hr(W ; X,L�), such that
Qs,r(X,L�)v = w in W . As before it follows that

Qs,r(X,L�) [Lv − f ] = LQs,r(X,L�)v −Qs,r(X,L�)f

= Lw −Qs,r(X,L�)f

= 0

in W . Write

g =
∑

|J|=q

gJ (x, t) dtJ
.
= Lv − f

and apply Proposition 3.2, recalling that λ� = A ◦ λ, with A an N × N complex
matrix: there is an open polydisc Δ centered at the origin in CN , with λ−1(Δ) ⊂ W
and, for each J a function GJ ∈ O(Δ) such that gJ = GJ ◦ λ. Hence g = λ∗(G),
where

G(z, ζ)
.
=

∑

|J|=p

FJ (z, ζ) dζJ

and the coordinates in CN are written as (z, ζ), with z = (z1, . . . , zm) and ζ =
(ζ1, . . . , ζn). Here Δ depends only on W .

Notice that

0 = Lg = Lλ∗(G) = λ∗(∂ζG)

and consequently, by a uniqueness argument [T2, p. 90], we conclude that ∂ζG = 0
in Δ. Finally we solve, in Δ, the equation

∂ζH = G,
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where

H(z, ζ) =
∑

|K|=p−1

HK(z, ζ) dζK

and the coefficients HK are holomorphic in Δ. Finally we set h
.
= λ∗(H). It follows

that h ∈ Gs0(V1; Λ
p−1) and that

Lh = λ∗(∂ζH) = λ∗(G) = Lv − f.

Hence

u
.
= v − h ∈ Gs(V1; Λ

p−1)

solves Lu = f in V1. The proof is complete. �

Remark 5.2. Notice that the restriction s > s0 in the statement of Theorem 5.1 is
a technical one. It is related to the fact that ultradifferential operators satisfying
(2) do not define endomorphisms of Gs(Ω), which has forced us to make all the
analyses that follow Lemma 3.2.

Remark 5.3. As kindly pointed out to us by the referee, there is an interesting
generalization of Theorem 5.1 which can be proved along exactly the same lines.
Denote the coordinates in CN by z = (z1, . . . , zN ).

Theorem 5.2. Let X ⊂ CN be a maximally real submanifold of class Gs0 and let
A(∂z) be a differential system with constant coefficients. If the induced system AX

on X is locally smoothly solvable, then it is locally solvable in Gs for every s > s0.

Theorem 5.1 follows from Theorem 5.2 when we take as A(∂z) a partial de Rham
system A(∂z) = (∂/∂z1, . . . , ∂/∂zp).

6. Gevrey solvability for first order linear PDE

Let

P (y,D) =
N∑

j=1

aj(y) ∂/∂yj + b(y)

be a first order differential operator defined on an open subset Ω of RN . We assume
that the coefficients of P (x,D) are real-analytic in Ω and that P (x,D) is of principal
type, that is,

N∑

j=1

|aj(y)| �= 0, ∀y ∈ Ω.

We can prove

Theorem 6.1. Let y0 ∈ Ω and assume that P (y,D) satisfies the Nirenberg-Treves
condition (P) at y0. Then for every s > 1 and every f ∈ Gs in a neighborhood of
y0 there is u ∈ Gs in a neighborhood of y0 solving P (y,D)u = f .

We refer to [NT] for the original statement of condition (P) for first order dif-
ferential operators.

Proof. The proof is a consequence of Theorem 5.1. Let us write

Y =
N∑

j=1

aj(y) ∂/∂yj .
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The complex vector field Y has no singularities, and then we can find a real-analytic
function H, defined in a neighborhood of y0, solving YH = b. But then

P (y,D) = exp{−H}Y exp{H},

which shows that it suffices to prove the result for Y substituted for P (y,D).
We now invoke the Cauchy-Kovalevsky theorem: writing N = m + 1, there are

real-analytic functions W1, . . . ,Wm defined in an open neighborhood of y0 such
that YWk = 0, k = 1, . . . ,m, and dW1, . . . , dWm are C-linearly independent at
each point.

Consequently, the vector field Y spans the orthogonal to the real-analytic lo-
cally integrable structure generated by dW1, . . . , dWm, and we can recall what
was described in Section 3: we can find a local system of cooordinates (x, t) =
(x1, . . . , xm, t) centered at y0 and defined in a domain of the form U = B×]− δ, δ[,
where B is an open ball centered at the origin in R

m, as well as a real-analytic
function φ : Ω → Rm φ = (φ1, . . . , φm), satisfying

φ(0, 0) = 0, φx(0, 0) = 0,

such that if we set

Zk(x, t) = xk + iφk(x, t), k = 1, . . . ,m,

then {dW1, . . . , dWk} and {dZ1, . . . , dZk} span the same subbundle of CT∗U . If we
again introduce the complex vector fields X1, . . . ,Xm on U defined by the relations

XkZ
 = δk
, Xkt = 0, k, � = 1, . . . ,m

and define

L =
∂

∂t
− i

m∑

j=1

∂φj

∂t
(x, t) Xj,

then Y equals L up to a non-vanishing real-analytic factor. This reduces the Gevrey
solvability of P (y,D) to that of L. But, by the invariance of condition (P), we know
that L also satisfies condition (P) and then L is smoothly solvable at the origin (cf.
[T1], [H]). Our conclusion then follows from Theorem 5.1. �

Remark 6.1. Another proof of Theorem 6.1 can be devised by studying in detail the
(local) right inverse for P (y,D) constructed in [T1]. Our argument though allows
us to state a stronger result. If we just assume that the coefficients of P (y,D)
are Gs0 and if we assume, in addition to condition (P), that the vector field Y is
Gs0-integrable, in the sense that in a neighborhood of y0 there are defined functions
W1, . . . ,Wm of class Gs0 such that YWk = 0, k = 1, . . . ,m, and dW1, . . . , dWm are
C-linearly independent at each point, then the conclusion of Theorem 6.1 holds for
every s > s0.

7. Representation of solutions and L-closed forms

We keep the hypotheses and notation established in Sections 3, 4 and 5.

Theorem 7.1. Assume that T′ defines a Gevrey locally integrable structure of order
s0 > 1 and let s > s0, r > 0. Then for every open neighborhood V ⊂ U of the origin
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there exist another such neighborhood W � V and an open polydisk D centered at
the origin in Cm, with W ⊂ Z−1(D), such that the following is true:

• For every u ∈ D′(V ) such that Lu = 0 there are g ∈ Gs(W ) satisfying
Lg = 0 and H ∈ O(D) such that

(30) u = Qs,r(X,L�)g +H ◦ Z in W.

Proof. The argument is similar to that in the proof of Theorem 5.1, to which we
also refer for the notation. First select an open neighborhood V1 � V of the origin.
By Proposition 3.1 (cf. Remark 3.2) we can write

(31) u = Qs,r(X,L�)v in V1

for some v ∈ Gs(V1). We have

0 = Lu = Qs,rLv

and then, arguing as in the proof of Theorem 5.1, we can find an open neighborhood
W ⊂ V1 of the origin, an open polydisc Δ ∈ CN , centered at the origin and with
W ⊂ λ−1(Δ), both depending only on V1, and G ∈ O(Δ) such that L(G ◦ λ) = Lv
in W . Then, setting g

.
= v −G ◦ λ, (31) gives

(32) u = Qs,rg +H ◦ λ,
in W , with H also holomorphic in Δ. But since Lu = Lg = 0 we obtain L(H ◦λ) =
λ∗(∂ζH) = 0. This implies ∂ζH = 0 in Δ and consequently H depends only on
z1, . . . , zm, which gives (30). �

Likewise we can prove:

Theorem 7.1′. Assume that T′ defines a locally Gevrey locally integrable structure
of order s0 > 1 and let s > s0, r > 0 and q ∈ {1, . . . , n}. Then for every open
neighborhood V ⊂ U of the origin there is another such neighborhood W � V such
that the following is true:

• For every u ∈ D′(V ; Λq) such that Lu = 0 there exist g ∈ Gs(W ; Λq)
satisfying Lg = 0 and h ∈ AT(W ; Λq−1) such that

(33) u = Qs,r(X,L�)g + Lh in W.

8. Gevrey regularity

We once more return to the situation described in Sections 4 and 5. In particular
we are assuming that the locally integrable structure T′ is Gevrey of order s.

Our goal in this section is just to present an example of how the techniques
presented in this work can be applied to the study of Gevrey regularity for the
solutions of the operator L acting on (scalar) ultra-distributions (cf. Theorem 8.1
below).

In order to do so we start by recalling the following definition:

Definition 8.1. We shall say that L is Gs-hypoelliptic at the origin if for every
V ⊂ U and every u ∈ D′

s(V ), the fact that Lju is Gs in a neighborhood of the
origin, j = 1, . . . , n, implies that u itself is of class Gs in such a neighborhood.

When s = 1 we must interpret D′
1(V ) as the space of hyperfunctions in V . In

this case we obtain a stronger concept of analytic-hypoellipticity at the origin than
that introduced in [T2, p. 146].
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Next we introduce a concept of (weak)-regularity.

Definition 8.2. We shall say that L satisfies property hs at the origin if for every
V ⊂ U and every u ∈ D′

s(V ) the fact that Lju is smooth in a neighborhood
of the origin, j = 1, . . . , n, implies that u itself is a (Schwartz) distribution in a
neighborhood of the origin.

Using arguments similar to the ones used in the proof of Theorem 4.1, to which
we refer in the following proof, we conclude this work by proving:

Theorem 8.1. If T′ is Gevrey of order s0 > 1 and if L satisfies property hs0 at
the origin, then, for every s > s0, L is Gs-hypoelliptic at the origin.

Proof. Let V ⊂ U be an open neighborhood of the origin and let u ∈ D′
s(V ) be

such that f
.
= Lu is Gevrey of order s in a neighborhood of the origin. Select

V1 � V , a neighborhood of the origin, and h > 0 so that f |V1
has coefficients in

Gs,h(V1; X,L�). Also select r > 0 such that

Qs,r(X,L�)f ∈ C∞(V1,Λ
1) .

We have, in D′
s0(V1),

Qs,r(X,L�)f = Qs,r(X,L�)Lu = LQs,r(X,L�)u.

Since L satisfies property hs0 at the origin, we can apply Proposition 3.1 (cf. Remark
3.2): there exist an open neighborhood of the origin W ⊂ V1 and v ∈ Gs(W )
satisfying

Qs,r(X,L�)v = Qs,r(X,L�)u in W .

By Proposition 3.2 (c. Remark 3.4) applied to u − v substituted for v and taking
into account that v ∈ Gs(W ), the existence of a neighborhood of the originW0 ⊂ W
follows such that u ∈ Gs(W0). �
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