A Costa-Hoffman-Meeks type surface in ${\mathbb H^2 \times \mathbb R }$
HTML articles powered by AMS MathViewer
- by Filippo Morabito
- Trans. Amer. Math. Soc. 363 (2011), 1-36
- DOI: https://doi.org/10.1090/S0002-9947-2010-04952-9
- Published electronically: September 1, 2010
- PDF | Request permission
Abstract:
We show the existence in the space ${\mathbb H}^2 \times \mathbb {R}$ of a family of embedded minimal surfaces of genus $1\leqslant k<+\infty$ and finite total extrinsic curvature with two catenoidal type ends and one middle planar end. The proof is based on a gluing procedure.References
- C. J. Costa, Imersões minimas en $\mathbb {R}^3$ de gênero un e curvatura total finita, Ph.D. thesis, IMPA, Rio de Janeiro, Brasil, 1982.
- Celso J. Costa, Example of a complete minimal immersion in $\textbf {R}^3$ of genus one and three embedded ends, Bol. Soc. Brasil. Mat. 15 (1984), no. 1-2, 47–54. MR 794728, DOI 10.1007/BF02584707
- Saadia Fakhi and Frank Pacard, Existence result for minimal hypersurfaces with a prescribed finite number of planar ends, Manuscripta Math. 103 (2000), no. 4, 465–512. MR 1811769, DOI 10.1007/PL00005863
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Laurent Hauswirth, Minimal surfaces of Riemann type in three-dimensional product manifolds, Pacific J. Math. 224 (2006), no. 1, 91–117. MR 2231653, DOI 10.2140/pjm.2006.224.91
- Laurent Hauswirth and Frank Pacard, Higher genus Riemann minimal surfaces, Invent. Math. 169 (2007), no. 3, 569–620. MR 2336041, DOI 10.1007/s00222-007-0056-z
- David A. Hoffman and William Meeks III, A complete embedded minimal surface in $\textbf {R}^3$ with genus one and three ends, J. Differential Geom. 21 (1985), no. 1, 109–127. MR 806705
- David Hoffman and William H. Meeks III, The asymptotic behavior of properly embedded minimal surfaces of finite topology, J. Amer. Math. Soc. 2 (1989), no. 4, 667–682. MR 1002088, DOI 10.1090/S0894-0347-1989-1002088-X
- David Hoffman and William H. Meeks III, Embedded minimal surfaces of finite topology, Ann. of Math. (2) 131 (1990), no. 1, 1–34. MR 1038356, DOI 10.2307/1971506
- M. Jleli, Constant mean curvature hypersurfaces, Ph.D. Thesis, University Paris 12 (2004).
- R. Kusner, R. Mazzeo, and D. Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 (1996), no. 1, 120–137. MR 1371233, DOI 10.1007/BF02246769
- Rafe Mazzeo, Frank Pacard, and Daniel Pollack, Connected sums of constant mean curvature surfaces in Euclidean 3 space, J. Reine Angew. Math. 536 (2001), 115–165. MR 1837428, DOI 10.1515/crll.2001.054
- Richard B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993. MR 1348401, DOI 10.1016/0377-0257(93)80040-i
- William H. Meeks and Harold Rosenberg, The theory of minimal surfaces in $M\times \Bbb R$, Comment. Math. Helv. 80 (2005), no. 4, 811–858. MR 2182702, DOI 10.4171/CMH/36
- William H. Meeks III and Harold Rosenberg, Stable minimal surfaces in $M\times \Bbb R$, J. Differential Geom. 68 (2004), no. 3, 515–534. MR 2144539
- Filippo Morabito, Index and nullity of the Gauss map of the Costa-Hoffman-Meeks surfaces, Indiana Univ. Math. J. 58 (2009), no. 2, 677–707. MR 2514384, DOI 10.1512/iumj.2009.58.3476
- Barbara Nelli and Harold Rosenberg, Minimal surfaces in ${\Bbb H}^2\times \Bbb R$, Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 2, 263–292. MR 1940353, DOI 10.1007/s005740200013
- Shin Nayatani, Morse index of complete minimal surfaces, The problem of Plateau, World Sci. Publ., River Edge, NJ, 1992, pp. 181–189. MR 1209216
- Shin Nayatani, Morse index and Gauss maps of complete minimal surfaces in Euclidean $3$-space, Comment. Math. Helv. 68 (1993), no. 4, 511–537. MR 1241471, DOI 10.1007/BF02565834
- Harold Rosenberg, Minimal surfaces in ${\Bbb M}^2\times \Bbb R$, Illinois J. Math. 46 (2002), no. 4, 1177–1195. MR 1988257
- Ricardo Sa Earp and Eric Toubiana, Screw motion surfaces in $\Bbb H^2\times \Bbb R$ and $\Bbb S^2\times \Bbb R$, Illinois J. Math. 49 (2005), no. 4, 1323–1362. MR 2210365
Bibliographic Information
- Filippo Morabito
- Affiliation: Laboratoire d’Analyse et Mathématiques Appliquées, Université Paris-Est, CNRS UMR 8050, 5 blvd Descartes, 77454 Champs-sur-Marne, France – and – Dipartimento di Matematica, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Roma, Italy
- Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongnyangni 2-Dong, Dongdaemun-gu Seoul 130-722, Korea
- Email: morabito@mat.uniroma3.it, filippo.morabito@univ-mlv.fr
- Received by editor(s): April 4, 2008
- Published electronically: September 1, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 1-36
- MSC (2000): Primary 53A10, 49Q05
- DOI: https://doi.org/10.1090/S0002-9947-2010-04952-9
- MathSciNet review: 2719669