A Chebyshev criterion for Abelian integrals
HTML articles powered by AMS MathViewer
- by M. Grau, F. Mañosas and J. Villadelprat
- Trans. Amer. Math. Soc. 363 (2011), 109-129
- DOI: https://doi.org/10.1090/S0002-9947-2010-05007-X
- Published electronically: August 27, 2010
- PDF | Request permission
Abstract:
We present a criterion that provides an easy sufficient condition in order for a collection of Abelian integrals to have the Chebyshev property. This condition involves the functions in the integrand of the Abelian integrals and can be checked, in many cases, in a purely algebraic way. By using this criterion, several known results are obtained in a shorter way and some new results, which could not be tackled by the known standard methods, can also be deduced.References
- Vladimir I. Arnold, Arnold’s problems, Springer-Verlag, Berlin; PHASIS, Moscow, 2004. Translated and revised edition of the 2000 Russian original; With a preface by V. Philippov, A. Yakivchik and M. Peters. MR 2078115
- Freddy Dumortier and Chengzhi Li, Perturbations from an elliptic Hamiltonian of degree four. I. Saddle loop and two saddle cycle, J. Differential Equations 176 (2001), no. 1, 114–157. MR 1861185, DOI 10.1006/jdeq.2000.3977
- Freddy Dumortier and Chengzhi Li, Perturbations from an elliptic Hamiltonian of degree four. II. Cuspidal loop, J. Differential Equations 175 (2001), no. 2, 209–243. MR 1855970, DOI 10.1006/jdeq.2000.3978
- Freddy Dumortier, Chengzhi Li, and Zifen Zhang, Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops, J. Differential Equations 139 (1997), no. 1, 146–193. MR 1467356, DOI 10.1006/jdeq.1997.3285
- Freddy Dumortier and Robert Roussarie, Abelian integrals and limit cycles, J. Differential Equations 227 (2006), no. 1, 116–165. MR 2233957, DOI 10.1016/j.jde.2005.08.015
- Armengol Gasull, Weigu Li, Jaume Llibre, and Zhifen Zhang, Chebyshev property of complete elliptic integrals and its application to Abelian integrals, Pacific J. Math. 202 (2002), no. 2, 341–361. MR 1887769, DOI 10.2140/pjm.2002.202.341
- Sébastien Gautier, Lubomir Gavrilov, and Iliya D. Iliev, Perturbations of quadratic centers of genus one, Discrete Contin. Dyn. Syst. 25 (2009), no. 2, 511–535. MR 2525189, DOI 10.3934/dcds.2009.25.511
- Lubomir Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), no. 3, 449–497. MR 1817642, DOI 10.1007/PL00005798
- Lubomir Gavrilov and Iliya D. Iliev, Bifurcations of limit cycles from infinity in quadratic systems, Canad. J. Math. 54 (2002), no. 5, 1038–1064. MR 1924712, DOI 10.4153/CJM-2002-038-6
- Lubomir Gavrilov and Iliya D. Iliev, Two-dimensional Fuchsian systems and the Chebyshev property, J. Differential Equations 191 (2003), no. 1, 105–120. MR 1973284, DOI 10.1016/S0022-0396(02)00116-X
- Frédéric Girard, Une propriété de Chebychev pour certaines intégrales abéliennes généralisées, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 4, 471–476 (French, with English and French summaries). MR 1648971, DOI 10.1016/S0764-4442(97)89794-7
- Maoan Han, Existence of at most 1, 2, or 3 zeros of a Melnikov function and limit cycles, J. Differential Equations 170 (2001), no. 2, 325–343. MR 1815187, DOI 10.1006/jdeq.2000.3828
- D. Hilbert, Mathematische Problem $($lecture$)$, Second Internat. Congress Math. Paris 1900, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1900, 253–297.
- E. Horozov and I. D. Iliev, On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. London Math. Soc. (3) 69 (1994), no. 1, 198–224. MR 1272426, DOI 10.1112/plms/s3-69.1.198
- Iliya D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math. 122 (1998), no. 2, 107–161. MR 1612784, DOI 10.1016/S0007-4497(98)80080-8
- I. D. Iliev and L. M. Perko, Higher order bifurcations of limit cycles, J. Differential Equations 154 (1999), no. 2, 339–363. MR 1691076, DOI 10.1006/jdeq.1998.3549
- Yu. Ilyashenko, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 301–354. MR 1898209, DOI 10.1090/S0273-0979-02-00946-1
- Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
- Chengzhi Li and Zhi-Fen Zhang, A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations 124 (1996), no. 2, 407–424. MR 1370149, DOI 10.1006/jdeq.1996.0017
- Jibin Li, Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 1, 47–106. MR 1965270, DOI 10.1142/S0218127403006352
- Pavao Marděsić, Chebyshev systems and the versal unfolding of the cusps of order $n$, Travaux en Cours [Works in Progress], vol. 57, Hermann, Paris, 1998. MR 1639719
- Lin Ping Peng, Unfolding of a quadratic integrable system with a homoclinic loop, Acta Math. Sin. (Engl. Ser.) 18 (2002), no. 4, 737–754. MR 1949228, DOI 10.1007/s10114-002-0196-4
- G. S. Petrov, The Chebyshev property of elliptic integrals, Funktsional. Anal. i Prilozhen. 22 (1988), no. 1, 83–84 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 1, 72–73. MR 936711, DOI 10.1007/BF01077734
- Yulin Zhao, Zhaojun Liang, and Gang Lu, The cyclicity of the period annulus of the quadratic Hamiltonian systems with non-Morsean point, J. Differential Equations 162 (2000), no. 1, 199–223. MR 1741877, DOI 10.1006/jdeq.1999.3704
Bibliographic Information
- M. Grau
- Affiliation: Departament de Matemàtica, Universitat de Lleida, Lleida, Spain
- Email: mtgrau@matematica.udl.cat
- F. Mañosas
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain
- MR Author ID: 254986
- Email: Francesc.Manosas@uab.cat
- J. Villadelprat
- Affiliation: Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
- Email: Jordi.Villadelprat@urv.cat
- Received by editor(s): July 3, 2008
- Published electronically: August 27, 2010
- Additional Notes: The first author was partially supported by the MEC/FEDER grant MTM2005-06098-C02-02. The second author was supported by the MEC/FEDER grants MTM2005-02139 and MTM2005-06098 and the CIRIT grant 2005SGR-00550. The third author was supported by the MEC/FEDER grant MTM2005-06098-C02-01 and the CIRIT grant 2005SGR-00550.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 109-129
- MSC (2010): Primary 34C08, 41A50; Secondary 34C23
- DOI: https://doi.org/10.1090/S0002-9947-2010-05007-X
- MathSciNet review: 2719674