The structure of commutative automorphic loops
HTML articles powered by AMS MathViewer
- by Přemysl Jedlička, Michael Kinyon and Petr Vojtěchovský
- Trans. Amer. Math. Soc. 363 (2011), 365-384
- DOI: https://doi.org/10.1090/S0002-9947-2010-05088-3
- Published electronically: August 16, 2010
- PDF | Request permission
Abstract:
An automorphic loop (or A-loop) is a loop whose inner mappings are automorphisms. Every element of a commutative A-loop generates a group, and $(xy)^{-1} = x^{-1}y^{-1}$ holds. Let $Q$ be a finite commutative A-loop and $p$ a prime. The loop $Q$ has order a power of $p$ if and only if every element of $Q$ has order a power of $p$. The loop $Q$ decomposes as a direct product of a loop of odd order and a loop of order a power of $2$. If $Q$ is of odd order, it is solvable. If $A$ is a subloop of $Q$, then $|A|$ divides $|Q|$. If $p$ divides $|Q|$, then $Q$ contains an element of order $p$. If there is a finite simple nonassociative commutative A-loop, it is of exponent $2$.References
- A. A. Albert, Quasigroups. II, Trans. Amer. Math. Soc. 55 (1944), 401–419. MR 10597, DOI 10.1090/S0002-9947-1944-0010597-1
- Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
- Michael Aschbacher, Near subgroups of finite groups, J. Group Theory 1 (1998), no. 2, 113–129. MR 1614316, DOI 10.1515/jgth.1998.005
- V. D. Belousov, Osnovy teorii kvazigrupp i lup, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0218483
- Richard Hubert Bruck, A survey of binary systems, Reihe: Gruppentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0093552
- R. H. Bruck and Lowell J. Paige, Loops whose inner mappings are automorphisms, Ann. of Math. (2) 63 (1956), 308–323. MR 76779, DOI 10.2307/1969612
- Aleš Drápal, A class of commutative loops with metacyclic inner mapping groups, Comment. Math. Univ. Carolin. 49 (2008), no. 3, 357–382. MR 2490433
- Tuval Foguel, Michael K. Kinyon, and J. D. Phillips, On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math. 36 (2006), no. 1, 183–212. MR 2228190, DOI 10.1216/rmjm/1181069494
- George Glauberman, On loops of odd order, J. Algebra 1 (1964), 374–396. MR 175991, DOI 10.1016/0021-8693(64)90017-1
- George Glauberman, On loops of odd order. II, J. Algebra 8 (1968), 393–414. MR 222198, DOI 10.1016/0021-8693(68)90050-1
- P. Jedlička, M. K. Kinyon and P. Vojtěchovský, Constructions of commutative automorphic loops, Comm. Alg., to appear.
- Tomáš Kepka, Michael K. Kinyon, and J. D. Phillips, The structure of F-quasigroups, J. Algebra 317 (2007), no. 2, 435–461. MR 2362925, DOI 10.1016/j.jalgebra.2007.05.007
- Michael K. Kinyon, Kenneth Kunen, and J. D. Phillips, Every diassociative $A$-loop is Moufang, Proc. Amer. Math. Soc. 130 (2002), no. 3, 619–624. MR 1866009, DOI 10.1090/S0002-9939-01-06090-7
- M. K. Kinyon, K. Kunen and J. D. Phillips, A generalization of Moufang loops and A-loops, in preparation.
- W. McCune, Prover9, version 2008-06A, (http://www.cs.unm.edu/ mccune/prover9/)
- J. Marshall Osborn, A theorem on $A$-loops, Proc. Amer. Math. Soc. 9 (1958), 347–349. MR 93555, DOI 10.1090/S0002-9939-1958-0093555-6
- Hala O. Pflugfelder, Quasigroups and loops: introduction, Sigma Series in Pure Mathematics, vol. 7, Heldermann Verlag, Berlin, 1990. MR 1125767
- Peter Plaumann and Liudmila Sabinina, On nuclearly nilpotent loops of finite exponent, Comm. Algebra 36 (2008), no. 4, 1346–1353. MR 2406589, DOI 10.1080/00927870701864072
Bibliographic Information
- Přemysl Jedlička
- Affiliation: Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic
- Email: jedlickap@tf.czu.cz
- Michael Kinyon
- Affiliation: Department of Mathematics, University of Denver, 2360 S Gaylord St., Denver, Colorado 80208
- MR Author ID: 267243
- ORCID: 0000-0002-5227-8632
- Email: mkinyon@math.du.edu
- Petr Vojtěchovský
- Affiliation: Department of Mathematics, University of Denver, 2360 S Gaylord St., Denver, Colorado 80208
- MR Author ID: 650320
- Email: petr@math.du.edu
- Received by editor(s): October 6, 2008
- Received by editor(s) in revised form: March 31, 2009
- Published electronically: August 16, 2010
- Additional Notes: The first author was supported by the Grant Agency of the Czech Republic, grant no. 201/07/P015.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 365-384
- MSC (2010): Primary 20N05
- DOI: https://doi.org/10.1090/S0002-9947-2010-05088-3
- MathSciNet review: 2719686