Relative isometric embeddings of Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Mohammad Ghomi and Robert E. Greene
- Trans. Amer. Math. Soc. 363 (2011), 63-73
- DOI: https://doi.org/10.1090/S0002-9947-2010-05095-0
- Published electronically: August 16, 2010
- PDF | Request permission
Abstract:
We prove the existence of $C^1$ isometric embeddings, and $C^\infty$ approximate isometric embeddings, of Riemannian manifolds into Euclidean space with prescribed values in a neighborhood of a point.References
- S. Alexander, M. Ghomi, and J. Wong. Topology of Riemannian submanifolds with prescribed boundary, Duke Math. J., 152 (2010), 533–565.
- Ben Andrews, Notes on the isometric embedding problem and the Nash-Moser implicit function theorem, Surveys in analysis and operator theory (Canberra, 2001) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 40, Austral. Nat. Univ., Canberra, 2002, pp. 157–208. MR 1953483
- Y. Eliashberg and N. Mishachev, Introduction to the $h$-principle, Graduate Studies in Mathematics, vol. 48, American Mathematical Society, Providence, RI, 2002. MR 1909245, DOI 10.1090/gsm/048
- Mohammad Ghomi, The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2255–2259. MR 1896406, DOI 10.1090/S0002-9939-02-06743-6
- Robert E. Greene, Isometric embeddings of Riemannian and pseudo-Riemannian manifolds. , Memoirs of the American Mathematical Society, No. 97, American Mathematical Society, Providence, R.I., 1970. MR 0262980
- Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505, DOI 10.1007/978-3-662-02267-2
- Matthias Günther, Isometric embeddings of Riemannian manifolds, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 1137–1143. MR 1159298
- Matthias Günther, On the perturbation problem associated to isometric embeddings of Riemannian manifolds, Ann. Global Anal. Geom. 7 (1989), no. 1, 69–77. MR 1029846, DOI 10.1007/BF00137403
- Qing Han and Jia-Xing Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs, vol. 130, American Mathematical Society, Providence, RI, 2006. MR 2261749, DOI 10.1090/surv/130
- Noel J. Hicks, Notes on differential geometry, Van Nostrand Mathematical Studies, No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0179691
- H. Jacobowitz, Extending isometric embeddings, J. Differential Geometry 9 (1974), 291–307. MR 377773
- Erwin Kreyszig, Differential geometry, Dover Publications, Inc., New York, 1991. Reprint of the 1963 edition. MR 1118149
- Nicolaas H. Kuiper, On $C^1$-isometric imbeddings. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 545–556, 683–689. MR 0075640
- John Nash, $C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383–396. MR 65993, DOI 10.2307/1969840
- John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20–63. MR 75639, DOI 10.2307/1969989
- Barrett O’Neill, Elementary differential geometry, 2nd ed., Elsevier/Academic Press, Amsterdam, 2006. MR 2351345
- A. V. Pogorelov, Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, Vol. 35, American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations. MR 0346714
- I. Kh. Sabitov, Local theory of bendings of surfaces [ MR1039820 (91c:53004)], Geometry, III, Encyclopaedia Math. Sci., vol. 48, Springer, Berlin, 1992, pp. 179–256. MR 1306736, DOI 10.1007/978-3-662-02751-6_{3}
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. V, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532834
Bibliographic Information
- Mohammad Ghomi
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- MR Author ID: 687341
- Email: ghomi@math.gatech.edu
- Robert E. Greene
- Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095
- Email: greene@math.ucla.edu
- Received by editor(s): April 28, 2008
- Published electronically: August 16, 2010
- Additional Notes: The first-named author was supported by NSF Grant DMS-0336455 and CAREER award DMS-0332333.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 63-73
- MSC (2010): Primary 53C42, 53A07
- DOI: https://doi.org/10.1090/S0002-9947-2010-05095-0
- MathSciNet review: 2719671