Geometric idealizer rings
HTML articles powered by AMS MathViewer
- by Susan J. Sierra
- Trans. Amer. Math. Soc. 363 (2011), 457-500
- DOI: https://doi.org/10.1090/S0002-9947-2010-05110-4
- Published electronically: August 23, 2010
- PDF | Request permission
Abstract:
Let $B = B(X, \mathcal {L}, \sigma )$ be the twisted homogeneous coordinate ring of a projective variety $X$ over an algebraically closed field $\Bbbk$. We construct and investigate a large class of interesting and highly noncommutative noetherian subrings of $B$. Specifically, let $Z$ be a closed subscheme of $X$ and let $I \subseteq B$ be the corresponding right ideal of $B$. We study the subalgebra \[ R = k + I\] of $B$. Under mild conditions on $Z$ and $\sigma \in \operatorname {Aut}_{\Bbbk }(X)$, $R$ is the idealizer of $I$ in $B$: the maximal subring of $B$ in which $I$ is a two-sided ideal.
Our main result gives geometric conditions on $Z$ and $\sigma$ that determine the algebraic properties of $R$. We say that \[ \{\sigma ^n(Z)\}\] is critically transverse if for any closed subscheme $Y$ of $Z$, for $|n| \gg 0$ the subschemes $Y$ and $\sigma ^n(Z)$ are homologically transverse. We show that if $\{\sigma ^n(Z)\}$ is critically transverse, then $R$ is left and right noetherian, has finite left and right cohomological dimension, is strongly right noetherian but not strongly left noetherian, and satisfies right $\chi _d$ (where $d = \operatorname {codim} Z$) but fails left $\chi _1$. This generalizes results of Rogalski in the case that $Z$ is a point in $\mathbb {P}^d$. We also give an example of a right noetherian ring with infinite right cohomological dimension, partially answering a question of Stafford and Van den Bergh.
Further, we study the geometry of critical transversality and show that it is often generic behavior, in a sense that we make precise.
References
- M. Artin, Some problems on three-dimensional graded domains, Representation theory and algebraic geometry (Waltham, MA, 1995) London Math. Soc. Lecture Note Ser., vol. 238, Cambridge Univ. Press, Cambridge, 1997, pp. 1–19. MR 1477464
- M. Artin, L. W. Small, and J. J. Zhang, Generic flatness for strongly Noetherian algebras, J. Algebra 221 (1999), no. 2, 579–610. MR 1728399, DOI 10.1006/jabr.1999.7997
- M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings, J. Algebra 133 (1990), no. 2, 249–271. MR 1067406, DOI 10.1016/0021-8693(90)90269-T
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- M. Artin and J. J. Zhang, Abstract Hilbert schemes, Algebr. Represent. Theory 4 (2001), no. 4, 305–394. MR 1863391, DOI 10.1023/A:1012006112261
- Jason Bell, Dragos Ghioca, and Thomas J. Tucker, The dynamical Mordell-Lang problem for étale maps, arXiv/0808.3266, 2008.
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- S. D. Cutkosky and V. Srinivas, On a problem of Zariski on dimensions of linear systems, Ann. of Math. (2) 137 (1993), no. 3, 531–559. MR 1217347, DOI 10.2307/2946531
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Takao Fujita, Vanishing theorems for semipositive line bundles, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 519–528. MR 726440, DOI 10.1007/BFb0099977
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Dennis S. Keeler, Criteria for $\sigma$-ampleness, J. Amer. Math. Soc. 13 (2000), no. 3, 517–532. MR 1758752, DOI 10.1090/S0894-0347-00-00334-9
- Dennis S. Keeler, Noncommutative ampleness for multiple divisors, J. Algebra 265 (2003), no. 1, 299–311. MR 1984913, DOI 10.1016/S0021-8693(03)00126-1
- D. S. Keeler, D. Rogalski, and J. T. Stafford, Naïve noncommutative blowing up, Duke Math. J. 126 (2005), no. 3, 491–546. MR 2120116, DOI 10.1215/S0012-7094-04-12633-8
- Ezra Miller and David E. Speyer, A Kleiman-Bertini theorem for sheaf tensor products, J. Algebraic Geom. 17 (2008), no. 2, 335–340. MR 2369089, DOI 10.1090/S1056-3911-07-00479-1
- J. C. Robson, Idealizers and hereditary Noetherian prime rings, J. Algebra 22 (1972), 45–81. MR 299639, DOI 10.1016/0021-8693(72)90104-4
- Daniel Rogalski, Generic noncommutative surfaces, Adv. Math. 184 (2004), no. 2, 289–341. MR 2054018, DOI 10.1016/S0001-8708(03)00147-6
- Daniel Rogalski, Idealizer rings and noncommutative projective geometry, J. Algebra 279 (2004), no. 2, 791–809. MR 2078942, DOI 10.1016/j.jalgebra.2004.04.001
- D. Rogalski and J. T. Stafford, A class of noncommutative projective surfaces, Proc. Lond. Math. Soc. (3) 99 (2009), no. 1, 100–144. MR 2520352, DOI 10.1112/plms/pdn054
- Jean-Pierre Serre, Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Translated from the French by CheeWhye Chin and revised by the author. MR 1771925, DOI 10.1007/978-3-662-04203-8
- Susan J. Sierra, A general homological Kleiman-Bertini theorem, Algebra Number Theory 3 (2009), no. 5, 597–609. MR 2578891, DOI 10.2140/ant.2009.3.597
- J. T. Stafford, On the ideals of a Noetherian ring, Trans. Amer. Math. Soc. 289 (1985), no. 1, 381–392. MR 779071, DOI 10.1090/S0002-9947-1985-0779071-5
- J. T. Stafford and M. van den Bergh, Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 2, 171–216. MR 1816070, DOI 10.1090/S0273-0979-01-00894-1
- J. T. Stafford and J. J. Zhang, Examples in non-commutative projective geometry, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 415–433. MR 1291750, DOI 10.1017/S0305004100072716
- Michel Van den Bergh, A translation principle for the four-dimensional Sklyanin algebras, J. Algebra 184 (1996), no. 2, 435–490. MR 1409223, DOI 10.1006/jabr.1996.0269
- Michel van den Bergh, Existence theorems for dualizing complexes over non-commutative graded and filtered rings, J. Algebra 195 (1997), no. 2, 662–679. MR 1469646, DOI 10.1006/jabr.1997.7052
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Amnon Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992), no. 1, 41–84. MR 1195406, DOI 10.1016/0021-8693(92)90148-F
- Amnon Yekutieli and James J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125 (1997), no. 3, 697–707. MR 1372045, DOI 10.1090/S0002-9939-97-03782-9
Bibliographic Information
- Susan J. Sierra
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Address at time of publication: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- MR Author ID: 860198
- Email: sjsierra@math.washington.edu
- Received by editor(s): October 22, 2008
- Received by editor(s) in revised form: May 6, 2009
- Published electronically: August 23, 2010
- Additional Notes: This paper was completed as part of the author’s Ph.D. thesis at the University of Michigan, under the supervision of J. T. Stafford. The author was partially supported by NSF grants DMS-0802935, DMS-0555750, and DMS-0502170, and by a Rackham Pre-Doctoral Fellowship from the University of Michigan.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 457-500
- MSC (2000): Primary 16S38; Secondary 14L30
- DOI: https://doi.org/10.1090/S0002-9947-2010-05110-4
- MathSciNet review: 2719690