Absence of line fields and Mañé’s theorem for nonrecurrent transcendental functions
HTML articles powered by AMS MathViewer
- by Lasse Rempe and Sebastian van Strien
- Trans. Amer. Math. Soc. 363 (2011), 203-228
- DOI: https://doi.org/10.1090/S0002-9947-2010-05125-6
- Published electronically: August 26, 2010
- PDF | Request permission
Abstract:
Let $f:\mathbb {C}\to \hat {\mathbb {C}}$ be a transcendental meromorphic function. Suppose that the finite part $\mathcal {P}(f)\cap \mathbb {C}$ of the postsingular set of $f$ is bounded, that $f$ has no recurrent critical points or wandering domains, and that the degree of pre-poles of $f$ is uniformly bounded. Then we show that $f$ supports no invariant line fields on its Julia set.
We prove this by generalizing two results about rational functions to the transcendental setting: a theorem of Mañé (1993) about the branching of iterated preimages of disks, and a theorem of McMullen (1994) regarding the absence of invariant line fields for “measurably transitive” functions. Both our theorems extend results previously obtained by Graczyk, Kotus and Świątek (2004).
References
- Artur Avila and Mikhail Lyubich, Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc. 21 (2008), no. 2, 305–363. MR 2373353, DOI 10.1090/S0894-0347-07-00583-8
- I. N. Baker, J. Kotus, and Lü Yinian, Iterates of meromorphic functions. IV. Critically finite functions, Results Math. 22 (1992), no. 3-4, 651–656. MR 1189754, DOI 10.1007/BF03323112
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Walter Bergweiler, Bloch’s principle, Comput. Methods Funct. Theory 6 (2006), no. 1, 77–108. MR 2241035, DOI 10.1007/BF03321119
- Walter Bergweiler and Janina Kotus, On the Hausdorff dimension of the escaping set of certain meromorphic functions, Preprint, 2009, arXiv:0901.3014.
- Walter Bergweiler and Shunsuke Morosawa, Semihyperbolic entire functions, Nonlinearity 15 (2002), no. 5, 1673–1684. MR 1925433, DOI 10.1088/0951-7715/15/5/316
- Heinrich Bock, Über das Iterationsverhalten meromorpher Funktionen auf der Juliamenge, Aachener Beiträge zur Mathematik 23, RWTH Aachen, 1998.
- D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), no. 1, 1–35. MR 967787, DOI 10.1112/blms/21.1.1
- Xavier Buff and Arnaud Chéritat, Ensembles de Julia quadratiques de mesure de Lebesgue strictement positive, C. R. Math. Acad. Sci. Paris 341 (2005), no. 11, 669–674 (French, with English and French summaries). MR 2183346, DOI 10.1016/j.crma.2005.10.001
- Lennart Carleson, Peter W. Jones, and Jean-Christophe Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 1, 1–30. MR 1274760, DOI 10.1007/BF01232933
- M. Denker, R. D. Mauldin, Z. Nitecki, and M. Urbański, Conformal measures for rational functions revisited, Fund. Math. 157 (1998), no. 2-3, 161–173. Dedicated to the memory of Wiesław Szlenk. MR 1636885, DOI 10.4064/fm_{1}998_{1}57_{2}-3_{1}_{1}61_{1}73
- A. È. Erëmenko and M. Ju. Ljubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), no. 3, 458–468. MR 918638, DOI 10.1112/jlms/s2-36.3.458
- A. È. Erëmenko and M. Yu. Lyubich, The dynamics of analytic transformations, Algebra i Analiz 1 (1989), no. 3, 1–70 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 3, 563–634. MR 1015124
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102
- Jacek Graczyk, Janina Kotus, and Grzegorz Świątek, Non-recurrent meromorphic functions, Fund. Math. 182 (2004), no. 3, 269–281. MR 2098781, DOI 10.4064/fm182-3-5
- Jeremy Kahn, Mikhail Lyubich, and Lasse Rempe, A note on hyperbolic leaves and wild laminations of rational functions, J. Difference Equ. Appl. 16 (2010), no. 5-6, 655–665.
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Masashi Kisaka, Some conditions for semi-hyperbolicity of entire functions and their applications, in Y. Imayoshi, Y. Komori, M. Nishio, K. Sakan (eds.), Complex Analysis and its Applications, OCAMI Studies vol. 2, 241–247, Osaka Municipal Universities Press, 2008.
- Janina Kotus and Mariusz Urbański, Geometry and ergodic theory of non-recurrent elliptic functions, J. Anal. Math. 93 (2004), 35–102. MR 2110325, DOI 10.1007/BF02789304
- Janina Kotus and Mariusz Urbański, Geometry and dynamics of some meromorphic functions, Math. Nachr. 279 (2006), no. 13-14, 1565–1584. MR 2269255, DOI 10.1002/mana.200410437
- M. Yu. Lyubich, Typical behavior of trajectories of the rational mapping of a sphere, Dokl. Akad. Nauk SSSR 268 (1983), no. 1, 29–32 (Russian). MR 687919
- Ricardo Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 1, 1–11. MR 1224298, DOI 10.1007/BF01231694
- Gaven J. Martin and Volker Mayer, Rigidity in holomorphic and quasiregular dynamics, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4349–4363. MR 1990755, DOI 10.1090/S0002-9947-03-03160-X
- Volker Mayer and Lasse Rempe, Conical rigidity for meromorphic and Ahlfors islands maps, Manuscript.
- Curt McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), no. 1, 329–342. MR 871679, DOI 10.1090/S0002-9947-1987-0871679-3
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), no. 4, 535–593. MR 1789177, DOI 10.1007/s000140050140
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- John Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR 2348953, DOI 10.4171/011-1/1
- Yûsuke Okuyama, Linearization problem on structurally finite entire functions, Kodai Math. J. 28 (2005), no. 2, 347–358. MR 2153922, DOI 10.2996/kmj/1123767015
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Feliks Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2081–2099. MR 1615954, DOI 10.1090/S0002-9947-99-02195-9
- Lasse Rempe, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), no. 2, 235–267. MR 2570071, DOI 10.1007/s11511-009-0042-y
- Lasse Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1411–1420. MR 2465667, DOI 10.1090/S0002-9939-08-09650-0
- Lasse Rempe and Sebastian van Strien, Density of hyperbolicity for classes of real transcendental entire functions and circle maps, Preprint, 2010, arXiv:1005.4627.
- Wilhelm Schwick, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), no. 3, 314–316. MR 1435565, DOI 10.1112/S0024609396007035
- Mitsuhiro Shishikura and Tan Lei, An alternative proof of Mañé’s theorem on non-expanding Julia sets, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 265–279. MR 1765093
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 2, 271–288. MR 1705459, DOI 10.1017/S0305004199003813
- Mariusz Urbański and Anna Zdunik, The finer geometry and dynamics of the hyperbolic exponential family, Michigan Math. J. 51 (2003), no. 2, 227–250. MR 1992945, DOI 10.1307/mmj/1060013195
- Mariusz Urbański and Anna Zdunik, Geometry and ergodic theory of non-hyperbolic exponential maps, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3973–3997. MR 2302520, DOI 10.1090/S0002-9947-07-04151-7
- Mariusz Urbański and Anna Zdunik, Instability of exponential Collet-Eckmann maps, Israel J. Math. 161 (2007), 347–371. MR 2350166, DOI 10.1007/s11856-007-0082-y
Bibliographic Information
- Lasse Rempe
- Affiliation: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
- MR Author ID: 738017
- ORCID: 0000-0001-8032-8580
- Email: l.rempe@liverpool.ac.uk
- Sebastian van Strien
- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- Email: strien@maths.warwick.ac.uk
- Received by editor(s): October 8, 2008
- Published electronically: August 26, 2010
- Additional Notes: This research was supported by EPSRC grant EP/E017886/1.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 203-228
- MSC (2010): Primary 37F10; Secondary 30D05, 37D25, 37F15, 37F35
- DOI: https://doi.org/10.1090/S0002-9947-2010-05125-6
- MathSciNet review: 2719679