Characterizing complete $\operatorname {CAT}(\kappa )$-spaces, $\kappa <0$, with geodesic boundary
HTML articles powered by AMS MathViewer
- by Thomas Foertsch and Katrin Radke
- Trans. Amer. Math. Soc. 363 (2011), 75-93
- DOI: https://doi.org/10.1090/S0002-9947-2010-05144-X
- Published electronically: August 27, 2010
- PDF | Request permission
Abstract:
We investigate the Bourdon and Hamenstädt boundaries of complete $\operatorname {CAT}(\kappa )$-spaces, $\kappa <0$, and characterize those with geodesic Hamenstädt boundary up to isometry.References
- Stephanie B. Alexander and Richard L. Bishop, Warped products of Hadamard spaces, Manuscripta Math. 96 (1998), no. 4, 487–505. MR 1639844, DOI 10.1007/s002290050078
- S. B. Alexander and R. L. Bishop, Curvature bounds for warped products of metric spaces, Geom. Funct. Anal. 14 (2004), no. 6, 1143–1181. MR 2135163, DOI 10.1007/s00039-004-0487-2
- Mario Bonk and Thomas Foertsch, Asymptotic upper curvature bounds in coarse geometry, Math. Z. 253 (2006), no. 4, 753–785. MR 2221098, DOI 10.1007/s00209-005-0931-5
- M. Bonk & T. Foertsch, Asymptotic lower curvature bounds in coarse geometry, preprint 2007
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4
- M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2, 266–306. MR 1771428, DOI 10.1007/s000390050009
- Marc Bourdon, Structure conforme au bord et flot géodésique d’un $\textrm {CAT}(-1)$-espace, Enseign. Math. (2) 41 (1995), no. 1-2, 63–102 (French, with English and French summaries). MR 1341941
- Sergei Buyalo and Viktor Schroeder, Elements of asymptotic geometry, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. MR 2327160, DOI 10.4171/036
- Chien-Hsiung Chen, Warped products of metric spaces of curvature bounded from above, Trans. Amer. Math. Soc. 351 (1999), no. 12, 4727–4740. MR 1466944, DOI 10.1090/S0002-9947-99-02154-6
- Thomas Foertsch, Alexander Lytchak, and Viktor Schroeder, Nonpositive curvature and the Ptolemy inequality, Int. Math. Res. Not. IMRN 22 (2007), Art. ID rnm100, 15. MR 2376212, DOI 10.1093/imrn/rnm100
- Thomas Foertsch and Viktor Schroeder, A product construction for hyperbolic metric spaces, Illinois J. Math. 49 (2005), no. 3, 793–810. MR 2210259
- T. Foertsch & V. Schroeder, Hyperbolicity, $\operatorname {CAT}(-1)$-spaces and the Ptolemy Inequality, to appear in Math. Ann.
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Ursula Hamenstädt, A new description of the Bowen-Margulis measure, Ergodic Theory Dynam. Systems 9 (1989), no. 3, 455–464. MR 1016663, DOI 10.1017/S0143385700005095
- Urs Lang and Thilo Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655. MR 2200122, DOI 10.1155/IMRN.2005.3625
Bibliographic Information
- Thomas Foertsch
- Affiliation: Mathematisches Institut, Universität Bonn, 53115 Bonn, Germany
- Email: foertsch@math.uni-bonn.de
- Katrin Radke
- Affiliation: Mathematisches Institut, Universität Bonn, 53115 Bonn, Germany
- Received by editor(s): June 15, 2008
- Published electronically: August 27, 2010
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 75-93
- MSC (2010): Primary 53C23, 53C24
- DOI: https://doi.org/10.1090/S0002-9947-2010-05144-X
- MathSciNet review: 2719672