Presenting the cohomology of a Schubert variety
HTML articles powered by AMS MathViewer
- by Victor Reiner, Alexander Woo and Alexander Yong
- Trans. Amer. Math. Soc. 363 (2011), 521-543
- DOI: https://doi.org/10.1090/S0002-9947-2010-05163-3
- Published electronically: August 13, 2010
- PDF | Request permission
Abstract:
We extend the short presentation due to [Borel ’53] of the cohomology ring of a generalized flag manifold to a relatively short presentation of the cohomology of any of its Schubert varieties. Our result is stated in a root-system uniform manner by introducing the essential set of a Coxeter group element, generalizing and giving a new characterization of [Fulton ’92]’s definition for permutations. Further refinements are obtained in type $A$.References
- E. Akyıldız, A. Lascoux, and P. Pragacz, Cohomology of Schubert subvarieties of $\textrm {GL}_n/P$, J. Differential Geom. 35 (1992), no. 3, 511–519. MR 1163446
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Schubert cells, and the cohomology of the spaces $G/P$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3–26 (Russian). MR 0429933
- Sara Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Mathematics, vol. 182, Birkhäuser Boston, Inc., Boston, MA, 2000. MR 1782635, DOI 10.1007/978-1-4612-1324-6
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- James B. Carrell, Some remarks on regular Weyl group orbits and the cohomology of Schubert varieties, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 33–41. MR 1197828, DOI 10.1090/conm/139/1197828
- Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287–301 (French). MR 342522, DOI 10.1007/BF01418790
- Mike Develin, Jeremy L. Martin, and Victor Reiner, Classification of Ding’s Schubert varieties: finer rook equivalence, Canad. J. Math. 59 (2007), no. 1, 36–62. MR 2289417, DOI 10.4153/CJM-2007-002-9
- Kequan Ding, Rook placements and cellular decomposition of partition varieties, Discrete Math. 170 (1997), no. 1-3, 107–151. MR 1452940, DOI 10.1016/S0012-365X(96)00002-7
- Kequan Ding, Rook placements and classification of partition varieties $B\backslash M_\lambda$, Commun. Contemp. Math. 3 (2001), no. 4, 495–500. MR 1869101, DOI 10.1142/S0219199701000469
- Kimmo Eriksson and Svante Linusson, Combinatorics of Fulton’s essential set, Duke Math. J. 85 (1996), no. 1, 61–76. MR 1412437, DOI 10.1215/S0012-7094-96-08502-6
- William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177, DOI 10.1215/S0012-7094-92-06516-1
- William Fulton and Piotr Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998. Appendix J by the authors in collaboration with I. Ciocan-Fontanine. MR 1639468, DOI 10.1007/BFb0096380
- V. Gasharov and V. Reiner, Cohomology of smooth Schubert varieties in partial flag manifolds, J. London Math. Soc. (2) 66 (2002), no. 3, 550–562. MR 1934291, DOI 10.1112/S0024610702003605
- Meinolf Geck and Sungsoon Kim, Bases for the Bruhat-Chevalley order on all finite Coxeter groups, J. Algebra 197 (1997), no. 1, 278–310. MR 1480786, DOI 10.1006/jabr.1997.7096
- Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649068
- Axel Hultman, Svante Linusson, John Shareshian, and Jonas Sjöstrand, From Bruhat intervals to intersection lattices and a conjecture of Postnikov, J. Combin. Theory Ser. A 116 (2009), no. 3, 564–580. MR 2500158, DOI 10.1016/j.jcta.2008.09.001
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Alain Lascoux and Marcel-Paul Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 3 (1996), no. 2, Research paper 27, approx. 35 (French). MR 1395667, DOI 10.37236/1285
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- —, Notes on Schubert polynomials, Publications du LaCIM. Université du Québec à Montréal, 1991.
- Laurent Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, vol. 6, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001. Translated from the 1998 French original by John R. Swallow; Cours Spécialisés [Specialized Courses], 3. MR 1852463
- Suho Oh, Alexander Postnikov, and Hwanchul Yoo, Bruhat order, smooth Schubert varieties, and hyperplane arrangements, J. Combin. Theory Ser. A 115 (2008), no. 7, 1156–1166. MR 2450335, DOI 10.1016/j.jcta.2008.01.003
- Nathan Reading, Order dimension, strong Bruhat order and lattice properties for posets, Order 19 (2002), no. 1, 73–100. MR 1902662, DOI 10.1023/A:1015287106470
- Bruce E. Sagan, The symmetric group, 2nd ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001. Representations, combinatorial algorithms, and symmetric functions. MR 1824028, DOI 10.1007/978-1-4757-6804-6
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
Bibliographic Information
- Victor Reiner
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 262157
- Email: reiner@math.umn.edu
- Alexander Woo
- Affiliation: Department of Mathematics, Statistics, and Computer Science, Saint Olaf College, Northfield, Minnesota 55057
- Email: woo@stolaf.edu
- Alexander Yong
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- MR Author ID: 693975
- Email: ayong@illinois.edu
- Received by editor(s): November 27, 2008
- Received by editor(s) in revised form: June 29, 2009
- Published electronically: August 13, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 521-543
- MSC (2000): Primary 14M15, 14N15
- DOI: https://doi.org/10.1090/S0002-9947-2010-05163-3
- MathSciNet review: 2719692