Extending positive definiteness
HTML articles powered by AMS MathViewer
- by Dariusz Cichoń, Jan Stochel and Franciszek Hugon Szafraniec
- Trans. Amer. Math. Soc. 363 (2011), 545-577
- DOI: https://doi.org/10.1090/S0002-9947-2010-05268-7
- Published electronically: August 31, 2010
- PDF | Request permission
Abstract:
The main result of this paper gives criteria for extendibility of mappings defined on symmetric subsets of $*$-semigroups to positive definite ones. By specifying the mappings in question we obtain new solutions of relevant issues in harmonic analysis concerning truncations of some important multivariate moment problems, like complex, two-sided complex and multidimensional trigonometric moment problems. In addition, unbounded subnormality and existence of unitary power dilation of several contractions is treated as an application of our general scheme.References
- J. Robert Archer, Positivity and the existence of unitary dilations of commuting contractions, The extended field of operator theory, Oper. Theory Adv. Appl., vol. 171, Birkhäuser, Basel, 2007, pp. 17–35. MR 2308555, DOI 10.1007/978-3-7643-7980-3_{2}
- Emil Artin, Collected papers, Springer-Verlag, New York-Berlin, 1982. Edited by Serge Lang and John T. Tate; Reprint of the 1965 original. MR 671416
- Mihály Bakonyi, The extension of positive definite operator-valued functions defined on a symmetric interval of an ordered group, Proc. Amer. Math. Soc. 130 (2002), no. 5, 1401–1406. MR 1879963, DOI 10.1090/S0002-9939-01-06288-8
- M. Bakonyi and D. Timotin, Extensions of positive definite functions on free groups, J. Funct. Anal. 246 (2007), no. 1, 31–49. MR 2316876, DOI 10.1016/j.jfa.2007.01.015
- Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984. Theory of positive definite and related functions. MR 747302, DOI 10.1007/978-1-4612-1128-0
- T. M. Bisgaard, The two-sided complex moment problem, Ark. Mat. 27 (1989), no. 1, 23–28. MR 1004719, DOI 10.1007/BF02386357
- Torben Maack Bisgaard, Extensions of Hamburger’s theorem, Semigroup Forum 57 (1998), no. 3, 397–429. MR 1640879, DOI 10.1007/PL00005988
- T. M. Bisgaard, On perfect semigroups, Acta Math. Hungar. 79 (1998), no. 4, 269–294. MR 1619811, DOI 10.1023/A:1006511012031
- Torben Maack Bisgaard, If $S\times T$ is semiperfect, is $S$ or $T$ perfect?, Hokkaido Math. J. 29 (2000), no. 3, 523–529. MR 1795489, DOI 10.14492/hokmj/1350912988
- Torben Maack Bisgaard, Characterization of moment multisequences by a variation of positive definiteness, Collect. Math. 52 (2001), no. 3, 205–218. MR 1885219
- Torben Maack Bisgaard, On the relation between the scalar moment problem and the matrix moment problem on $*$-semigroups, Semigroup Forum 68 (2004), no. 1, 25–46. MR 2027606, DOI 10.1007/s00233-002-0003-7
- Torben M. Bisgaard and Paul Ressel, Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups, Math. Z. 200 (1989), no. 4, 511–525. MR 987584, DOI 10.1007/BF01160953
- J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- Ramón Bruzual and Marisela Domínguez, Extension of locally defined indefinite functions on ordered groups, Integral Equations Operator Theory 50 (2004), no. 1, 57–81. MR 2091054, DOI 10.1007/s00020-003-1223-2
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- A.P. Calderón and R. Pepinsky, On the phase of Fourier coefficients for positive real periodic functions, in Computing Methods and the Phase Problem in X-ray Crystal Analysis, Department of Physics, Pennsylvania State College, State College, Pa. (1952), 339-348.
- D. Cichoń, J. Stochel, F. H. Szafraniec, Incomplete Riesz-Haviland criterion.
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- Raúl E. Curto and Lawrence A. Fialkow, An analogue of the Riesz-Haviland theorem for the truncated moment problem, J. Funct. Anal. 255 (2008), no. 10, 2709–2731. MR 2464189, DOI 10.1016/j.jfa.2008.09.003
- Michael A. Dritschel, On factorization of trigonometric polynomials, Integral Equations Operator Theory 49 (2004), no. 1, 11–42. MR 2057766, DOI 10.1007/s00020-002-1198-4
- Bent Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), no. 1, 47–65. MR 693807
- K. Furuta and N. Sakakibara, Radon perfectness of conelike $\ast$-semigroups in $\textbf {Q}^{(\infty )}$, Acta Math. Hungar. 91 (2001), no. 1-2, 1–8. MR 1912357, DOI 10.1023/A:1010672624878
- Jean-Pierre Gabardo, Extension of positive-definite distributions and maximum entropy, Mem. Amer. Math. Soc. 102 (1993), no. 489, x+94. MR 1139457, DOI 10.1090/memo/0489
- Jean-Pierre Gabardo, Tight frames of polynomials and the truncated trigonometric moment problem, J. Fourier Anal. Appl. 1 (1995), no. 3, 249–279. MR 1353540, DOI 10.1007/s00041-001-4012-9
- Jean-Pierre Gabardo, Trigonometric moment problems for arbitrary finite subsets of $\textbf {Z}^n$, Trans. Amer. Math. Soc. 350 (1998), no. 11, 4473–4498. MR 1443194, DOI 10.1090/S0002-9947-98-02091-1
- Jean-Pierre Gabardo, Truncated trigonometric moment problems and determinate measures, J. Math. Anal. Appl. 239 (1999), no. 2, 349–370. MR 1723065, DOI 10.1006/jmaa.1999.6567
- Jeffrey S. Geronimo and Hugo J. Woerdeman, Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables, Ann. of Math. (2) 160 (2004), no. 3, 839–906. MR 2144970, DOI 10.4007/annals.2004.160.839
- E. K. Haviland, On the Momentum Problem for Distribution Functions in More than One Dimension, Amer. J. Math. 57 (1935), no. 3, 562–568. MR 1507095, DOI 10.2307/2371187
- E. K. Haviland, On the Momentum Problem for Distribution Functions in More Than One Dimension. II, Amer. J. Math. 58 (1936), no. 1, 164–168. MR 1507139, DOI 10.2307/2371063
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Edwin Hewitt and Herbert S. Zuckerman, The $l_1$-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70–97. MR 81908, DOI 10.1090/S0002-9947-1956-0081908-4
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- Zenon J. Jabłoński, Jan Stochel, and Franciszek Hugon Szafraniec, Unitary propagation of operator data, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 3, 689–699. MR 2360524, DOI 10.1017/S001309150500180X
- Yrjö Kilpi, Über das komplexe Momentenproblem, Ann. Acad. Sci. Fenn. Ser. A. I. 236 (1957), 32 (German). MR 94660
- M. Krein, Sur le problème du prolongement des fonctions hermitiennes positives et continues, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 17–22 (French). MR 0004333
- R. J. Lindahl and P. H. Maserick, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771–782. MR 291826
- P. H. Maserick, Spectral theory of operator-valued transformations, J. Math. Anal. Appl. 41 (1973), 497–507. MR 343084, DOI 10.1016/0022-247X(73)90225-4
- Włodzimierz Mlak, Dilations of Hilbert space operators (general theory), Dissertationes Math. (Rozprawy Mat.) 153 (1978), 61. MR 496046
- Yoshihiro Nakamura and Nobuhisa Sakakibara, Perfectness of certain subsemigroups of a perfect semigroup, Math. Ann. 287 (1990), no. 2, 213–220. MR 1054564, DOI 10.1007/BF01446888
- Katsuyoshi Nishio and Nobuhisa Sakakibara, Perfectness of conelike $\ast$-semigroups in $\mathbf Q^k$, Math. Nachr. 216 (2000), 155–167. MR 1774907, DOI 10.1002/1522-2616(200008)216:1<155::AID-MANA155>3.3.CO;2-O
- Mihai Putinar and Florian-Horia Vasilescu, Solving moment problems by dimensional extension, Ann. of Math. (2) 149 (1999), no. 3, 1087–1107. MR 1709313, DOI 10.2307/121083
- Bruce Reznick, Uniform denominators in Hilbert’s seventeenth problem, Math. Z. 220 (1995), no. 1, 75–97. MR 1347159, DOI 10.1007/BF02572604
- M. Riesz, Sur le probléme des moments, Troisième Note, Arkiv für Matematik, Astronomi och Fysik 17 (1923), 1-52.
- Walter Rudin, The extension problem for positive-definite functions, Illinois J. Math. 7 (1963), 532–539. MR 151796
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- L. A. Sakhnovich, Interpolation theory and its applications, Mathematics and its Applications, vol. 428, Kluwer Academic Publishers, Dordrecht, 1997. MR 1631843, DOI 10.1007/978-94-009-0059-2
- Konrad Schmüdgen, The $K$-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173, DOI 10.1007/BF01446568
- J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, American Mathematical Society, New York, 1943. MR 0008438
- Jan Stochel, A note on general operator dilations over $\ast$-semigroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 3-4, 149–153 (1981) (English, with Russian summary). MR 620351
- Jan Stochel, Moment functions on real algebraic sets, Ark. Mat. 30 (1992), no. 1, 133–148. MR 1171099, DOI 10.1007/BF02384866
- J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators. I, J. Operator Theory 14 (1985), no. 1, 31–55. MR 789376
- J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators. II, Acta Sci. Math. (Szeged) 53 (1989), no. 1-2, 153–177. MR 1018684
- Jan Stochel and Franciszek H. Szafraniec, On normal extensions of unbounded operators. III. Spectral properties, Publ. Res. Inst. Math. Sci. 25 (1989), no. 1, 105–139. MR 999353, DOI 10.2977/prims/1195173765
- Jan Stochel and Franciszek Hugon Szafraniec, The complex moment problem and subnormality: a polar decomposition approach, J. Funct. Anal. 159 (1998), no. 2, 432–491. MR 1658092, DOI 10.1006/jfan.1998.3284
- Jan Stochel and Franciszek Hugon Szafraniec, Unitary dilation of several contractions, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 585–598. MR 1902903
- Jan Stochel and Franciszek Hugon Szafraniec, Domination of unbounded operators and commutativity, J. Math. Soc. Japan 55 (2003), no. 2, 405–437. MR 1961294, DOI 10.2969/jmsj/1191419124
- Franciszek H. Szafraniec, A general dilation theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 3, 263–267 (English, with Russian summary). MR 445309
- F. H. Szafraniec, Boundedness of the shift operator related to positive definite forms: an application to moment problems, Ark. Mat. 19 (1981), no. 2, 251–259. MR 650498, DOI 10.1007/BF02384482
- F. H. Szafraniec, Dilations of linear and nonlinear operator maps, Functions, series, operators, Vol. I, II (Budapest, 1980) Colloq. Math. Soc. János Bolyai, vol. 35, North-Holland, Amsterdam, 1983, pp. 1165–1169. MR 751074
- Franciszek Hugon Szafraniec, Sur les fonctions admettant une extension de type positif, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 8, 431–432 (French, with English summary). MR 611409
- B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Appendix to F. Riesz, B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1960.
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- F.-H. Vasilescu, Existence of unitary dilations as a moment problem, Reproducing kernel spaces and applications, Oper. Theory Adv. Appl., vol. 143, Birkhäuser, Basel, 2003, pp. 333–344. MR 2019357
Bibliographic Information
- Dariusz Cichoń
- Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, PL-30348 Kraków, Poland
- Email: Dariusz.Cichon@im.uj.edu.pl
- Jan Stochel
- Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, PL-30348 Kraków, Poland
- Email: Jan.Stochel@im.uj.edu.pl
- Franciszek Hugon Szafraniec
- Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, PL-30348 Kraków, Poland
- Email: Franciszek.Szafraniec@im.uj.edu.pl
- Received by editor(s): December 22, 2008
- Received by editor(s) in revised form: December 9, 2009
- Published electronically: August 31, 2010
- Additional Notes: This work was partially supported by KBN grant 2 P03A 037 024 and by MNiSzW grant N201 026 32/1350. The third author would like to acknowledge assistance of the EU Sixth Framework Programme for the Transfer of Knowledge “Operator theory methods for differential equations” (TODEQ) # MTKD-CT-2005-030042. A very early version of this paper was designated for Kreĭn’s anniversary volume. However, due to its growing capacity we have been exceeding all consecutive deadlines; let us thank Professor Vadim Adamyan for his patience in negotiating them.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 545-577
- MSC (2010): Primary 43A35, 44A60; Secondary 47A20, 47B20
- DOI: https://doi.org/10.1090/S0002-9947-2010-05268-7
- MathSciNet review: 2719693
Dedicated: To the memory of M.G. Kreĭn (1907-1989)