Regularity of multifractal spectra of conformal iterated function systems
HTML articles powered by AMS MathViewer
- by Johannes Jaerisch and Marc Kesseböhmer
- Trans. Amer. Math. Soc. 363 (2011), 313-330
- DOI: https://doi.org/10.1090/S0002-9947-2010-05326-7
- Published electronically: August 25, 2010
- PDF | Request permission
Abstract:
We investigate multifractal regularity for infinite conformal iterated function systems (cIFS). That is, we determine to what extent the multifractal spectrum depends continuously on the cIFS and its thermodynamic potential. For this we introduce the notion of regular convergence for families of cIFS not necessarily sharing the same index set, which guarantees the convergence of the multifractal spectra on the interior of their domain. In particular, we obtain an Exhausting Principle for infinite cIFS allowing us to carry over results for finite to infinite systems, and in this way to establish a multifractal analysis without the usual regularity conditions. Finally, we discuss the connections to the $\lambda$-topology introduced by Roy and Urbański.References
- U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, Turbulence and predictability in geophysical fluid dynamics and climate dynamics (North-Holland, Amsterdam), 1985, 84–88.
- Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, Itamar Procaccia, and Boris I. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A (3) 33 (1986), no. 2, 1141–1151. MR 823474, DOI 10.1103/PhysRevA.33.1141
- J. Jaerisch and M. Kesseböhmer, The arithmetic-geometric scaling spectrum for continued fractions, Arkiv för Matematik 48 (2010), no. 2, 335–360.
- J. Jaerisch, M. Kesseböhmer, and S. Lamei, Induced topological pressure for countable state Markov shifts, preprint in arXiv (2010).
- M. Kesseböhmer, S. Munday, and B. O. Stratmann, Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey-Lüroth and $\alpha$-Lüroth systems, preprint in arXiv (2010).
- Marc Kesseböhmer and Bernd O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math. 605 (2007), 133–163. MR 2338129, DOI 10.1515/CRELLE.2007.029
- Marc Kesseböhmer and Mariusz Urbański, Higher-dimensional multifractal value sets for conformal infinite graph directed Markov systems, Nonlinearity 20 (2007), no. 8, 1969–1985. MR 2343687, DOI 10.1088/0951-7715/20/8/009
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics Digital Archive 62 (1974), no. 02, 331–358.
- B. B. Mandelbrot, An introduction to multifractal distribution functions, Random fluctuations and pattern growth (Cargèse, 1988) NATO Adv. Sci. Inst. Ser. E: Appl. Sci., vol. 157, Kluwer Acad. Publ., Dordrecht, 1988, pp. 279–291. MR 988448
- R. Daniel Mauldin and Mariusz Urbański, Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003. Geometry and dynamics of limit sets. MR 2003772, DOI 10.1017/CBO9780511543050
- Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications. MR 1489237, DOI 10.7208/chicago/9780226662237.001.0001
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- Mario Roy, Hiroki Sumi, and Mariusz Urbański, Lambda-topology versus pointwise topology, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 685–713. MR 2486790, DOI 10.1017/S0143385708080292
- Mario Roy and Mariusz Urbański, Regularity properties of Hausdorff dimension in infinite conformal iterated function systems, Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1961–1983. MR 2183304, DOI 10.1017/S0143385705000313
- Mario Roy and Mariusz Urbański, Multifractal analysis for conformal graph directed Markov systems, Discrete Contin. Dyn. Syst. 25 (2009), no. 2, 627–650. MR 2525196, DOI 10.3934/dcds.2009.25.627
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI 10.1016/0022-247X(77)90060-9
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
Bibliographic Information
- Johannes Jaerisch
- Affiliation: AG Dynamical Systems and Geometry, FB-3 Mathematik und Informatik, Universität Bremen, Bibliothekstrasse 1, 28359 Bremen, Germany
- Email: jogy@math.uni-bremen.de
- Marc Kesseböhmer
- Affiliation: AG Dynamical Systems and Geometry, FB-3 Mathematik und Informatik, Universität Bremen, Bibliothekstrasse 1, 28359 Bremen, Germany
- Email: mhk@math.uni-bremen.de
- Received by editor(s): February 14, 2009
- Published electronically: August 25, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 313-330
- MSC (2010): Primary 37C45; Secondary 37D25, 37D35
- DOI: https://doi.org/10.1090/S0002-9947-2010-05326-7
- MathSciNet review: 2719683