Endpoint estimates for bilinear oscillatory integral operators related to restriction to the cone
HTML articles powered by AMS MathViewer
- by Jungjin Lee
- Trans. Amer. Math. Soc. 363 (2011), 763-800
- DOI: https://doi.org/10.1090/S0002-9947-2010-05286-9
- Published electronically: September 20, 2010
- PDF | Request permission
Abstract:
We prove an endpoint estimate for oscillatory integral operators whose phase function satisfies the cinematic curvature condition. It is a generalization of a result due to Tao (2001).References
- Bartolome Barcelo Taberner, On the restriction of the Fourier transform to a conical surface, Trans. Amer. Math. Soc. 292 (1985), no. 1, 321–333. MR 805965, DOI 10.1090/S0002-9947-1985-0805965-8
- J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. MR 1097257, DOI 10.1007/BF01896376
- J. Bourgain, Estimates for cone multipliers, Geometric aspects of functional analysis (Israel, 1992–1994) Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 41–60. MR 1353448
- Jean Bourgain, Some new estimates on oscillatory integrals, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 83–112. MR 1315543
- Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert). MR 361607, DOI 10.4064/sm-44-3-287-299
- Lars Hörmander, Oscillatory integrals and multipliers on $FL^{p}$, Ark. Mat. 11 (1973), 1–11. MR 340924, DOI 10.1007/BF02388505
- Sanghyuk Lee, Bilinear restriction estimates for surfaces with curvatures of different signs, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3511–3533. MR 2218987, DOI 10.1090/S0002-9947-05-03796-7
- Sanghyuk Lee, Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces, J. Funct. Anal. 241 (2006), no. 1, 56–98. MR 2264247, DOI 10.1016/j.jfa.2006.05.011
- Sanghyuk Lee and Ana Vargas, Sharp null form estimates for the wave equation, Amer. J. Math. 130 (2008), no. 5, 1279–1326. MR 2450209, DOI 10.1353/ajm.0.0024
- Gerd Mockenhaupt, A note on the cone multiplier, Proc. Amer. Math. Soc. 117 (1993), no. 1, 145–152. MR 1098404, DOI 10.1090/S0002-9939-1993-1098404-6
- Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge, Local smoothing of Fourier integral operators and Carleson-Sjölin estimates, J. Amer. Math. Soc. 6 (1993), no. 1, 65–130. MR 1168960, DOI 10.1090/S0894-0347-1993-1168960-6
- G. Mockenhaupt, Bounds in Lebesgue spaces of oscillatory integral operators, Habilitationsschrift, Universität Siegen, 1996.
- Christopher D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), no. 2, 349–376. MR 1098614, DOI 10.1007/BF01245080
- Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR 1205579, DOI 10.1017/CBO9780511530029
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
- Terence Tao, Ana Vargas, and Luis Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), no. 4, 967–1000. MR 1625056, DOI 10.1090/S0894-0347-98-00278-1
- T. Tao and A. Vargas, A bilinear approach to cone multipliers. I. Restriction estimates, Geom. Funct. Anal. 10 (2000), no. 1, 185–215. MR 1748920, DOI 10.1007/s000390050006
- T. Tao and A. Vargas, A bilinear approach to cone multipliers. II. Applications, Geom. Funct. Anal. 10 (2000), no. 1, 216–258. MR 1748921, DOI 10.1007/s000390050007
- Terence Tao, Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates, Math. Z. 238 (2001), no. 2, 215–268. MR 1865417, DOI 10.1007/s002090100251
- T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359–1384. MR 2033842, DOI 10.1007/s00039-003-0449-0
- Ana Vargas, Restriction theorems for a surface with negative curvature, Math. Z. 249 (2005), no. 1, 97–111. MR 2106972, DOI 10.1007/s00209-004-0691-7
- Thomas Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153 (2001), no. 3, 661–698. MR 1836285, DOI 10.2307/2661365
Bibliographic Information
- Jungjin Lee
- Affiliation: Department of Mathematics, Pohang University of Science and Technology, Hyoja-dong Nam-gu, Pohang 790-784, Gyungbuk, Korea
- Address at time of publication: Korea Institute for Advanced Study, 207-43 Cheongryangri 2-dong Dongdaemun-gu, Seoul 130-722, Korea
- Email: leejj@kias.re.kr
- Received by editor(s): March 22, 2009
- Published electronically: September 20, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 763-800
- MSC (2010): Primary 42B20, 35S30
- DOI: https://doi.org/10.1090/S0002-9947-2010-05286-9
- MathSciNet review: 2728585