Nonsymmetric conical upper density and $k$-porosity
HTML articles powered by AMS MathViewer
- by Antti Käenmäki and Ville Suomala
- Trans. Amer. Math. Soc. 363 (2011), 1183-1195
- DOI: https://doi.org/10.1090/S0002-9947-2010-04869-X
- Published electronically: October 21, 2010
- PDF | Request permission
Abstract:
We study how the Hausdorff measure is distributed in nonsymmetric narrow cones in $\mathbb {R}^n$. As an application, we find an upper bound close to $n-k$ for the Hausdorff dimension of sets with large $k$-porosity. With $k$-porous sets we mean sets which have holes in $k$ different directions on every small scale.References
- P. Erdős and Z. Füredi, The greatest angle among $n$ points in the $d$-dimensional Euclidean space, Combinatorial mathematics (Marseille-Luminy, 1981) North-Holland Math. Stud., vol. 75, North-Holland, Amsterdam, 1983, pp. 275–283. MR 841305
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Esa Järvenpää and Maarit Järvenpää, Porous measures on $\Bbb R^n$: local structure and dimensional properties, Proc. Amer. Math. Soc. 130 (2002), no. 2, 419–426. MR 1862121, DOI 10.1090/S0002-9939-01-06161-5
- E. Järvenpää, M. Järvenpää, A. Käenmäki, T. Rajala, S. Rogovin, and V. Suomala. Packing dimension and Ahlfors regularity of porous sets in metric spaces. Math. Z., 266(1):83–105, 2010.
- E. Järvenpää, M. Järvenpää, A. Käenmäki, and V. Suomala, Asymptotically sharp dimension estimates for $k$-porous sets, Math. Scand. 97 (2005), no. 2, 309–318. MR 2191709, DOI 10.7146/math.scand.a-14978
- Antti Käenmäki, On natural invariant measures on generalised iterated function systems, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 419–458. MR 2097242
- Antti Käenmäki and Ville Suomala, Conical upper density theorems and porosity of measures, Adv. Math. 217 (2008), no. 3, 952–966. MR 2383891, DOI 10.1016/j.aim.2007.07.003
- Pekka Koskela and Steffen Rohde, Hausdorff dimension and mean porosity, Math. Ann. 309 (1997), no. 4, 593–609. MR 1483825, DOI 10.1007/s002080050129
- O. Martio and M. Vuorinen, Whitney cubes, $p$-capacity, and Minkowski content, Exposition. Math. 5 (1987), no. 1, 17–40. MR 880256
- Pertti Mattila, Distribution of sets and measures along planes, J. London Math. Soc. (2) 38 (1988), no. 1, 125–132. MR 949087, DOI 10.1112/jlms/s2-38.1.125
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Arto Salli, Upper density properties of Hausdorff measures on fractals, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 55 (1985), 49. MR 809031
- Arto Salli, On the Minkowski dimension of strongly porous fractal sets in $\textbf {R}^n$, Proc. London Math. Soc. (3) 62 (1991), no. 2, 353–372. MR 1085645, DOI 10.1112/plms/s3-62.2.353
- Jukka Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 297–307. MR 0396945, DOI 10.5186/aasfm.1975.0121
- Ville Suomala, On the conical density properties of measures on ${\Bbb R}^n$, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 3, 493–512. MR 2138576, DOI 10.1017/S0305004105008376
- D. A. Trocenko, Properties of regions with a nonsmooth boundary, Sibirsk. Mat. Zh. 22 (1981), no. 4, 221–224, 232 (Russian). MR 624419
- Jussi Väisälä, Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc. 299 (1987), no. 2, 525–533. MR 869219, DOI 10.1090/S0002-9947-1987-0869219-8
Bibliographic Information
- Antti Käenmäki
- Affiliation: Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland
- Email: antti.kaenmaki@jyu.fi
- Ville Suomala
- Affiliation: Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland
- MR Author ID: 759786
- Email: ville.suomala@jyu.fi
- Received by editor(s): May 1, 2004
- Received by editor(s) in revised form: July 4, 2008
- Published electronically: October 21, 2010
- Additional Notes: The first author acknowledges the support of the Academy of Finland (project #114821)
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 1183-1195
- MSC (2000): Primary 28A75; Secondary 28A78, 28A80
- DOI: https://doi.org/10.1090/S0002-9947-2010-04869-X
- MathSciNet review: 2737262