Duality in spaces of finite linear combinations of atoms
HTML articles powered by AMS MathViewer
- by Fulvio Ricci and Joan Verdera
- Trans. Amer. Math. Soc. 363 (2011), 1311-1323
- DOI: https://doi.org/10.1090/S0002-9947-2010-05036-6
- Published electronically: October 15, 2010
- PDF | Request permission
Abstract:
In this paper we describe the dual and the completion of the space of finite linear combinations of $(p,\infty )$-atoms, $0<p\leq 1$. As an application, we show an extension result for operators uniformly bounded on $(p,\infty )$-atoms, $0<p < 1$, whose analogue for $p=1$ is known to be false. Let $0 < p <1$ and let $T$ be a linear operator defined on the space of finite linear combinations of $(p,\infty )$-atoms, $0<p < 1$, which takes values in a Banach space $B$. If $T$ is uniformly bounded on $(p,\infty )$-atoms, then $T$ extends to a bounded operator from $H^p(\mathbb {R}^n)$ into $B$.References
- Marcin Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3535–3542. MR 2163588, DOI 10.1090/S0002-9939-05-07892-5
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- Stefano Meda, Peter Sjögren, and Maria Vallarino, On the $H^1$-$L^1$ boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2921–2931. MR 2399059, DOI 10.1090/S0002-9939-08-09365-9
- Stefano Meda, Peter Sjögren, and Maria Vallarino, Atomic decompositions and operators on Hardy spaces, Rev. Un. Mat. Argentina 50 (2009), no. 2, 15–22. MR 2656522
- Yves Meyer, Mitchell H. Taibleson, and Guido Weiss, Some functional analytic properties of the spaces $B_q$ generated by blocks, Indiana Univ. Math. J. 34 (1985), no. 3, 493–515. MR 794574, DOI 10.1512/iumj.1985.34.34028
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Mitchell H. Taibleson and Guido Weiss, The molecular characterization of certain Hardy spaces, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 67–149. MR 604370
- Dachun Yang and Yuan Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. 29 (2009), no. 2, 207–218. MR 2481589, DOI 10.1007/s00365-008-9015-1
Bibliographic Information
- Fulvio Ricci
- Affiliation: Reparto di Matematica, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italia
- MR Author ID: 193872
- ORCID: 0000-0001-6272-8548
- Email: fricci@sns.it
- Joan Verdera
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Catalonia
- Email: jvm@mat.uab.cat
- Received by editor(s): October 23, 2008
- Published electronically: October 15, 2010
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 1311-1323
- MSC (2010): Primary 42B30; Secondary 46J99
- DOI: https://doi.org/10.1090/S0002-9947-2010-05036-6
- MathSciNet review: 2737267