The number of cliques in graphs of given order and size
HTML articles powered by AMS MathViewer
- by V. Nikiforov
- Trans. Amer. Math. Soc. 363 (2011), 1599-1618
- DOI: https://doi.org/10.1090/S0002-9947-2010-05189-X
- Published electronically: October 22, 2010
- PDF | Request permission
Abstract:
Let $k_{r}\left (n,m\right )$ denote the minimum number of $r$-cliques in graphs with $n$ vertices and $m$ edges. For $r=3,4$ we give a lower bound on $k_{r}\left (n,m\right )$ that approximates $k_{r}\left (n,m\right )$ with an error smaller than $n^{r}/\left (n^{2}-2m\right ).$
The solution is based on a constraint minimization of certain multilinear forms. Our proof combines a combinatorial strategy with extensive analytical arguments.
References
- Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi, Counting graph homomorphisms, Topics in discrete mathematics, Algorithms Combin., vol. 26, Springer, Berlin, 2006, pp. 315–371. MR 2249277, DOI 10.1007/3-540-33700-8_{1}8
- Béla Bollobás, On complete subgraphs of different orders, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 19–24. MR 424614, DOI 10.1017/S0305004100052063
- Béla Bollobás, Extremal graph theory, London Mathematical Society Monographs, vol. 11, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 506522
- Béla Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. MR 1633290, DOI 10.1007/978-1-4612-0619-4
- P. Erdős, On a theorem of Rademacher-Turán, Illinois J. Math. 6 (1962), 122–127. MR 137661, DOI 10.1215/ijm/1255631811
- P. Erdős, On the number of complete subgraphs and circuits contained in graphs. , Časopis Pěst. Mat. 94 (1969), 290–296. MR 0252253, DOI 10.21136/CPM.1969.108598
- David C. Fisher, Lower bounds on the number of triangles in a graph, J. Graph Theory 13 (1989), no. 4, 505–512. MR 1010583, DOI 10.1002/jgt.3190130411
- L. Lovász and M. Simonovits, On the number of complete subgraphs of a graph. II, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 459–495. MR 820244
- László Lovász, Very large graphs, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 67–128. MR 2555927
- Alexander A. Razborov, Flag algebras, J. Symbolic Logic 72 (2007), no. 4, 1239–1282. MR 2371204, DOI 10.2178/jsl/1203350785
- Alexander A. Razborov, On the minimal density of triangles in graphs, Combin. Probab. Comput. 17 (2008), no. 4, 603–618. MR 2433944, DOI 10.1017/S0963548308009085
- P. Turán, On an extremal problem in graph theory (in Hungarian), $\emph {Mat.}$ és Fiz. Lapok 48 (1941) 436-452.
Bibliographic Information
- V. Nikiforov
- Affiliation: Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152
- Email: vnikifrv@memphis.edu
- Received by editor(s): April 5, 2009
- Received by editor(s) in revised form: August 18, 2009
- Published electronically: October 22, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 1599-1618
- MSC (2010): Primary 05C35
- DOI: https://doi.org/10.1090/S0002-9947-2010-05189-X
- MathSciNet review: 2737279