Refinements of the Littlewood-Richardson rule
HTML articles powered by AMS MathViewer
- by J. Haglund, K. Luoto, S. Mason and S. van Willigenburg
- Trans. Amer. Math. Soc. 363 (2011), 1665-1686
- DOI: https://doi.org/10.1090/S0002-9947-2010-05244-4
- Published electronically: October 15, 2010
- PDF | Request permission
Abstract:
In the prequel to this paper, we showed how results of Mason involving a new combinatorial formula for polynomials that are now known as Demazure atoms (characters of quotients of Demazure modules, called standard bases by Lascoux and Schützenberger) could be used to define a new basis for the ring of quasisymmetric functions we call “Quasisymmetric Schur functions” (QS functions for short). In this paper we develop the combinatorics of these polynomials further, by showing that the product of a Schur function and a Demazure atom has a positive expansion in terms of Demazure atoms. We use these techniques, together with the fact that both a QS function and a Demazure character have explicit expressions as a positive sum of atoms, to obtain the expansion of a product of a Schur function with a QS function (Demazure character) as a positive sum of QS functions (Demazure characters). Our formula for the coefficients in the expansion of a product of a Demazure character and a Schur function into Demazure characters is similar to known results and includes in particular the famous Littlewood-Richardson rule for the expansion of a product of Schur functions in terms of the Schur basis.References
- Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), no. 3, 207–278. MR 658729, DOI 10.1016/0001-8708(82)90039-1
- Demazure, M., Désingularisation des variétés de Schubert, Ann. E. N. S., 6 (1974), 163–172.
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math. 130 (2008), no. 2, 359–383. MR 2405160, DOI 10.1353/ajm.2008.0015
- Haglund, J., Luoto, K., Mason, S., van Willigenburg, S., Quasisymmetric Schur functions, J. Combin. Theory Ser. A, in press. Also available at arXiv:0810.2489.
- van der Kallen, W., Lectures on Frobenius splittings and B-modules, Springer, New York, USA, 1993.
- Mikhail Kogan, RC-graphs and a generalized Littlewood-Richardson rule, Internat. Math. Res. Notices 15 (2001), 765–782. MR 1849481, DOI 10.1155/S1073792801000393
- Axel Kohnert, Multiplication of a Schubert polynomial by a Schur polynomial, Ann. Comb. 1 (1997), no. 4, 367–375. MR 1630751, DOI 10.1007/BF02558487
- Venkatramani Lakshmibai and Peter Magyar, Standard monomial theory for Bott-Samelson varieties, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 11, 1211–1215 (English, with English and French summaries). MR 1456289, DOI 10.1016/S0764-4442(99)80401-7
- Alain Lascoux and Marcel-Paul Schützenberger, Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 125–144. MR 1035493
- Macdonald, I., A new class of symmetric polynomials, Sém. Lothar. Combin., 372 (1988).
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
- Mason, S., A decomposition of Schur functions and an analogue of the Robinson-Schensted-Knuth algorithm, Sém. Lothar. Combin., 57 (2008), B57e.
- S. Mason, An explicit construction of type A Demazure atoms, J. Algebraic Combin. 29 (2009), no. 3, 295–313. MR 2496309, DOI 10.1007/s10801-008-0133-4
- Patrick Polo, Variétés de Schubert et excellentes filtrations, Astérisque 173-174 (1989), 10–11, 281–311 (French, with English summary). Orbites unipotentes et représentations, III. MR 1021515
- Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143. MR 1324004, DOI 10.1016/0097-3165(95)90083-7
- V. Reiner and M. Shimozono, Flagged Weyl modules for two column shapes, J. Pure Appl. Algebra 141 (1999), no. 1, 59–100. MR 1705973, DOI 10.1016/S0022-4049(99)00066-3
- V. Reiner and M. Shimozono, Straightening for standard monomials on Schubert varieties, J. Algebra 195 (1997), no. 1, 130–140. MR 1468886, DOI 10.1006/jabr.1997.7092
- Victor Reiner and Mark Shimozono, Percentage-avoiding, northwest shapes and peelable tableaux, J. Combin. Theory Ser. A 82 (1998), no. 1, 1–73. MR 1616579, DOI 10.1006/jcta.1997.2841
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Brian D. Taylor, A straightening algorithm for row-convex tableaux, J. Algebra 236 (2001), no. 1, 155–191. MR 1808350, DOI 10.1006/jabr.2000.8495
Bibliographic Information
- J. Haglund
- Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6395
- MR Author ID: 600170
- Email: jhaglund@math.upenn.edu
- K. Luoto
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
- Email: kwluoto@math.ubc.ca
- S. Mason
- Affiliation: Department of Mathematics, University of California at San Diego, San Diego, California 92093
- Address at time of publication: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
- Email: skmason@math.ucsd.edu, masonsk@wfu.edu
- S. van Willigenburg
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
- MR Author ID: 619047
- Email: steph@math.ubc.ca
- Received by editor(s): July 10, 2009
- Received by editor(s) in revised form: November 10, 2009
- Published electronically: October 15, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 1665-1686
- MSC (2000): Primary 05E05; Secondary 05E10, 33D52
- DOI: https://doi.org/10.1090/S0002-9947-2010-05244-4
- MathSciNet review: 2737282