Steiner problems in optimal transport
HTML articles powered by AMS MathViewer
- by Jonathan Dahl
- Trans. Amer. Math. Soc. 363 (2011), 1805-1819
- DOI: https://doi.org/10.1090/S0002-9947-2010-05065-2
- Published electronically: November 17, 2010
- PDF | Request permission
Abstract:
We study the Steiner problem of finding a minimal spanning network in the setting of a space of probability measures with metric defined by the cost of optimal transport between measures. The existence of a solution is shown for the Wasserstein space $P_p(\mathcal {X})$ over any base space $\mathcal {X}$ which is a separable, locally compact Hadamard space. Structural results are given for the case $P_2(\mathbb {R}^n)$.References
- Luigi Ambrosio and Paolo Tilli, Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, vol. 25, Oxford University Press, Oxford, 2004. MR 2039660
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Stephanie Halbeisen, On tangent cones of Alexandrov spaces with curvature bounded below, Manuscripta Math. 103 (2000), no. 2, 169–182. MR 1796313, DOI 10.1007/s002290070018
- Alexandr O. Ivanov and Alexei A. Tuzhilin, Minimal networks, CRC Press, Boca Raton, FL, 1994. The Steiner problem and its generalizations. MR 1271779
- L. V. Kantorovich, On a problem of Monge, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 312 (2004), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 11, 15–16 (Russian); English transl., J. Math. Sci. (N.Y.) 133 (2006), no. 4, 1383. MR 2117877, DOI 10.1007/s10958-006-0050-9
- L. V. Kantorovich, On mass transportation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 312 (2004), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 11, 11–14 (Russian); English transl., J. Math. Sci. (N.Y.) 133 (2006), no. 4, 1381–1382. MR 2117876, DOI 10.1007/s10958-006-0049-2
- John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903–991. MR 2480619, DOI 10.4007/annals.2009.169.903
- Chikako Mese and Sumio Yamada, The parameterized Steiner problem and the singular plateau Problem via energy, Trans. Amer. Math. Soc. 358 (2006), no. 7, 2875–2895. MR 2216250, DOI 10.1090/S0002-9947-06-04089-X
- Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen. 1 (1956), 177–238 (Russian, with English summary). MR 0084896
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
Bibliographic Information
- Jonathan Dahl
- Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
- Address at time of publication: Department of Mathematics, University of California, Berkeley, California 94720
- Email: jdahl@math.jhu.edu, jdahl@math.berkeley.edu
- Received by editor(s): July 10, 2008
- Published electronically: November 17, 2010
- Additional Notes: The author would like to thank Chikako Mese for suggesting the problem and for many helpful discussions, as well as the referee for recommendations on an earlier draft.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 1805-1819
- MSC (2010): Primary 49Q20; Secondary 90C35, 49J10
- DOI: https://doi.org/10.1090/S0002-9947-2010-05065-2
- MathSciNet review: 2746666