Subordinated discrete semigroups of operators
HTML articles powered by AMS MathViewer
- by Nick Dungey
- Trans. Amer. Math. Soc. 363 (2011), 1721-1741
- DOI: https://doi.org/10.1090/S0002-9947-2010-05094-9
- Published electronically: November 15, 2010
- PDF | Request permission
Abstract:
Given a power-bounded linear operator $T$ in a Banach space and a probability $F$ on the non-negative integers, one can form a ‘subordinated’ operator $S = \sum _{k\geq 0} F(k) T^k$. We obtain asymptotic properties of the subordinated discrete semigroup $(S^n\colon n=1,2, \ldots )$ under certain conditions on $F$. In particular, we study probabilities $F$ with the property that $S$ satisfies the Ritt resolvent condition whenever $T$ is power-bounded. Examples and counterexamples of this property are discussed. The hypothesis of power-boundedness of $T$ can sometimes be replaced by the weaker Kreiss resolvent condition.References
- Christian Berg, Khristo Boyadzhiev, and Ralph deLaubenfels, Generation of generators of holomorphic semigroups, J. Austral. Math. Soc. Ser. A 55 (1993), no. 2, 246–269. MR 1232759
- Sönke Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001), no. 2, 157–176. MR 1853519, DOI 10.4064/sm146-2-3
- Sönke Blunck, Analyticity and discrete maximal regularity on $L_p$-spaces, J. Funct. Anal. 183 (2001), no. 1, 211–230. MR 1837537, DOI 10.1006/jfan.2001.3740
- Alfred S. Carasso and Tosio Kato, On subordinated holomorphic semigroups, Trans. Amer. Math. Soc. 327 (1991), no. 2, 867–878. MR 1018572, DOI 10.1090/S0002-9947-1991-1018572-4
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- Ronald G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998. MR 1634900, DOI 10.1007/978-1-4612-1656-8
- Nick Dungey, Time regularity for random walks on locally compact groups, Probab. Theory Related Fields 137 (2007), no. 3-4, 429–442. MR 2278463, DOI 10.1007/s00440-006-0006-5
- Nick Dungey, On time regularity and related conditions for power-bounded operators, Proc. Lond. Math. Soc. (3) 97 (2008), no. 1, 97–116. MR 2434092, DOI 10.1112/plms/pdm058
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, Proc. Amer. Math. Soc. 38 (1973), 325–330. MR 313476, DOI 10.1090/S0002-9939-1973-0313476-9
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- Janos Galambos, Advanced probability theory, 2nd ed., Probability: Pure and Applied, vol. 10, Marcel Dekker, Inc., New York, 1995. MR 1350792
- Markus Haase, The functional calculus for sectorial operators, Operator Theory: Advances and Applications, vol. 169, Birkhäuser Verlag, Basel, 2006. MR 2244037, DOI 10.1007/3-7643-7698-8
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- N. Kalton, S. Montgomery-Smith, K. Oleszkiewicz, and Y. Tomilov, Power-bounded operators and related norm estimates, J. London Math. Soc. (2) 70 (2004), no. 2, 463–478. MR 2078905, DOI 10.1112/S0024610704005514
- Tosio Kato, Note on fractional powers of linear operators, Proc. Japan Acad. 36 (1960), 94–96. MR 121666
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Yu. Lyubich, The single-point spectrum operators satisfying Ritt’s resolvent condition, Studia Math. 145 (2001), no. 2, 135–142. MR 1828001, DOI 10.4064/sm145-2-3
- Celso Martínez Carracedo and Miguel Sanz Alix, The theory of fractional powers of operators, North-Holland Mathematics Studies, vol. 187, North-Holland Publishing Co., Amsterdam, 2001. MR 1850825
- Alfonso Montes-Rodríguez, Juan Sánchez-Álvarez, and Jaroslav Zemánek, Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. (3) 91 (2005), no. 3, 761–788. MR 2180462, DOI 10.1112/S002461150501539X
- Olavi Nevanlinna, Convergence of iterations for linear equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. MR 1217705, DOI 10.1007/978-3-0348-8547-8
- Olavi Nevanlinna, On the growth of the resolvent operators for power bounded operators, Linear operators (Warsaw, 1994) Banach Center Publ., vol. 38, Polish Acad. Sci. Inst. Math., Warsaw, 1997, pp. 247–264. MR 1457011
- Olavi Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), no. 2, 113–134. MR 1828000, DOI 10.4064/sm145-2-2
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Frank Spitzer, Principles of random walk, 2nd ed., Graduate Texts in Mathematics, Vol. 34, Springer-Verlag, New York-Heidelberg, 1976. MR 0388547
- Pascale Vitse, Functional calculus under the Tadmor-Ritt condition, and free interpolation by polynomials of a given degree, J. Funct. Anal. 210 (2004), no. 1, 43–72. MR 2051632, DOI 10.1016/j.jfa.2003.08.002
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
Bibliographic Information
- Nick Dungey
- Affiliation: Department of Mathematics, Macquarie University, NSW 2109, Australia
- Received by editor(s): January 27, 2008
- Published electronically: November 15, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 1721-1741
- MSC (2000): Primary 47A30; Secondary 60G50, 47A60, 47D06
- DOI: https://doi.org/10.1090/S0002-9947-2010-05094-9
- MathSciNet review: 2746662