Prox-regular sets and epigraphs in uniformly convex Banach spaces: Various regularities and other properties
HTML articles powered by AMS MathViewer
- by Frédéric Bernard, Lionel Thibault and Nadia Zlateva
- Trans. Amer. Math. Soc. 363 (2011), 2211-2247
- DOI: https://doi.org/10.1090/S0002-9947-2010-05261-4
- Published electronically: November 16, 2010
- PDF | Request permission
Abstract:
We continue the study of prox-regular sets that we began in a previous work in the setting of uniformly convex Banach spaces endowed with a norm both uniformly smooth and uniformly convex (e.g., $L^p, W^{m,p}$ spaces). We prove normal and tangential regularity properties for these sets, and in particular the equality between Mordukhovich and proximal normal cones. We also compare in this setting the proximal normal cone with different Hölderian normal cones depending on the power types $s,q$ of moduli of smoothness and convexity of the norm. In the case of sets that are epigraphs of functions, we show that $J$-primal lower regular functions have prox-regular epigraphs and we compare these functions with Poliquin’s primal lower nice functions depending on the power types $s,q$ of the moduli. The preservation of prox-regularity of the intersection of finitely many sets and of the inverse image is obtained under a calmness assumption. A conical derivative formula for the metric projection mapping of prox-regular sets is also established. Among other results of the paper it is proved that the Attouch-Wets convergence preserves the uniform $r$-prox-regularity property and that the metric projection mapping is in some sense continuous with respect to this convergence for such sets.References
- Hédy Attouch and Roger J.-B. Wets, Isometries for the Legendre-Fenchel transform, Trans. Amer. Math. Soc. 296 (1986), no. 1, 33–60. MR 837797, DOI 10.1090/S0002-9947-1986-0837797-X
- D. Aussel, A. Daniilidis, and L. Thibault, Subsmooth sets: functional characterizations and related concepts, Trans. Amer. Math. Soc. 357 (2005), no. 4, 1275–1301. MR 2115366, DOI 10.1090/S0002-9947-04-03718-3
- Bernard Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland Mathematics Studies, vol. 68, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 86. MR 889253
- Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778, DOI 10.1007/978-94-015-8149-3
- Frédéric Bernard and Lionel Thibault, Prox-regular functions in Hilbert spaces, J. Math. Anal. Appl. 303 (2005), no. 1, 1–14. MR 2113863, DOI 10.1016/j.jmaa.2004.06.003
- Frédéric Bernard and Lionel Thibault, Prox-regularity of functions and sets in Banach spaces, Set-Valued Anal. 12 (2004), no. 1-2, 25–47. MR 2069350, DOI 10.1023/B:SVAN.0000023403.87092.a2
- F. Bernard and L. Thibault, Uniform prox-regularity of functions and epigraphs in Hilbert spaces, Nonlinear Anal. 60 (2005), no. 2, 187–207. MR 2101873, DOI 10.1016/j.na.2004.04.015
- F. Bernard, L. Thibault, and D. Zagrodny, Integration of primal lower nice functions in Hilbert spaces, J. Optim. Theory Appl. 124 (2005), no. 3, 561–579. MR 2129814, DOI 10.1007/s10957-004-1174-z
- Frédéric Bernard, Lionel Thibault, and Nadia Zlateva, Characterizations of prox-regular sets in uniformly convex Banach spaces, J. Convex Anal. 13 (2006), no. 3-4, 525–559. MR 2291551
- J. M. Borwein and J. R. Giles, The proximal normal formula in Banach space, Trans. Amer. Math. Soc. 302 (1987), no. 1, 371–381 (English, with French summary). MR 887515, DOI 10.1090/S0002-9947-1987-0887515-5
- J. M. Borwein and H. M. Strójwas, Tangential approximations, Nonlinear Anal. 9 (1985), no. 12, 1347–1366. MR 820646, DOI 10.1016/0362-546X(85)90095-1
- J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. I. Theory, Canad. J. Math. 38 (1986), no. 2, 431–452. MR 833578, DOI 10.4153/CJM-1986-022-4
- J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. II. Applications, Canad. J. Math. 39 (1987), no. 2, 428–472. MR 899844, DOI 10.4153/CJM-1987-019-4
- M. Bounkhel and L. Thibault, On various notions of regularity of sets in nonsmooth analysis, Nonlinear Anal. 48 (2002), no. 2, Ser. A: Theory Methods, 223–246. MR 1870754, DOI 10.1016/S0362-546X(00)00183-8
- Annamaria Canino, On $p$-convex sets and geodesics, J. Differential Equations 75 (1988), no. 1, 118–157. MR 957011, DOI 10.1016/0022-0396(88)90132-5
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and control theory, Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998. MR 1488695
- F. H. Clarke, R. J. Stern, and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property, J. Convex Anal. 2 (1995), no. 1-2, 117–144. MR 1363364
- Giovanni Colombo and Vladimir V. Goncharov, Variational inequalities and regularity properties of closed sets in Hilbert spaces, J. Convex Anal. 8 (2001), no. 1, 197–221. MR 1829062
- Rafael Correa, Alejandro Jofré, and Lionel Thibault, Subdifferential monotonicity as characterization of convex functions, Numer. Funct. Anal. Optim. 15 (1994), no. 5-6, 531–535. MR 1281560, DOI 10.1080/01630569408816579
- Marco Degiovanni, Antonio Marino, and Mario Tosques, General properties of $(p,q)$-convex functions and $(p,q)$-monotone operators, Ricerche Mat. 32 (1983), no. 2, 285–319. MR 766683
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- Jean Fenel Edmond and Lionel Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations 226 (2006), no. 1, 135–179. MR 2232433, DOI 10.1016/j.jde.2005.12.005
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001. MR 1831176, DOI 10.1007/978-1-4757-3480-5
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- A. D. Ioffe, Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2) 41 (1990), no. 1, 175–192. MR 1063554, DOI 10.1112/jlms/s2-41.1.175
- A. D. Ioffe, Metric regularity and subdifferential calculus, Uspekhi Mat. Nauk 55 (2000), no. 3(333), 103–162 (Russian, with Russian summary); English transl., Russian Math. Surveys 55 (2000), no. 3, 501–558. MR 1777352, DOI 10.1070/rm2000v055n03ABEH000292
- M. Ivanov and N. Zlateva, On primal lower-nice property, C. R. Acad. Bulgare Sci. 54 (2001), no. 11, 5–10. MR 1878038
- A. Jourani and L. Thibault, Metric regularity for strongly compactly Lipschitzian mappings, Nonlinear Anal. 24 (1995), no. 2, 229–240. MR 1312592, DOI 10.1016/0362-546X(94)E0061-K
- Ka Sing Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), no. 5, 791–795. MR 510772, DOI 10.1512/iumj.1978.27.27051
- A. B. Levy, R. Poliquin, and L. Thibault, Partial extensions of Attouch’s theorem with applications to proto-derivatives of subgradient mappings, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1269–1294. MR 1290725, DOI 10.1090/S0002-9947-1995-1290725-3
- Sylvie Marcellin and Lionel Thibault, Evolution problems associated with primal lower nice functions, J. Convex Anal. 13 (2006), no. 2, 385–421. MR 2252239
- Bertrand Maury and Juliette Venel, Un modèle de mouvements de foule, Paris-Sud Working Group on Modelling and Scientific Computing 2006–2007, ESAIM Proc., vol. 18, EDP Sci., Les Ulis, 2007, pp. 143–152 (French, with English and French summaries). MR 2404902, DOI 10.1051/proc:071812
- Boris S. Mordukhovich, Variational analysis and generalized differentiation. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006. Basic theory. MR 2191744
- Boris S. Mordukhovich and Yong Heng Shao, Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1235–1280. MR 1333396, DOI 10.1090/S0002-9947-96-01543-7
- René A. Poliquin, Integration of subdifferentials of nonconvex functions, Nonlinear Anal. 17 (1991), no. 4, 385–398. MR 1123210, DOI 10.1016/0362-546X(91)90078-F
- R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc. 348 (1996), no. 5, 1805–1838. MR 1333397, DOI 10.1090/S0002-9947-96-01544-9
- R. A. Poliquin, R. T. Rockafellar, and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5231–5249. MR 1694378, DOI 10.1090/S0002-9947-00-02550-2
- R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362, DOI 10.1007/978-3-642-02431-3
- Alexander Shapiro, Existence and differentiability of metric projections in Hilbert spaces, SIAM J. Optim. 4 (1994), no. 1, 130–141. MR 1260410, DOI 10.1137/0804006
- Lionel Thibault, Sweeping process with regular and nonregular sets, J. Differential Equations 193 (2003), no. 1, 1–26. MR 1994056, DOI 10.1016/S0022-0396(03)00129-3
- Lionel Thibault, Regularization of nonconvex sweeping process in Hilbert space, Set-Valued Anal. 16 (2008), no. 2-3, 319–333. MR 2399209, DOI 10.1007/s11228-008-0083-y
- Lionel Thibault and Dariusz Zagrodny, Integration of subdifferentials of lower semicontinuous functions on Banach spaces, J. Math. Anal. Appl. 189 (1995), no. 1, 33–58. MR 1312029, DOI 10.1006/jmaa.1995.1003
- Zong Ben Xu and G. F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), no. 1, 189–210. MR 1109451, DOI 10.1016/0022-247X(91)90144-O
- Eduardo H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory. I. Projections on convex sets, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Publ. Math. Res. Center Univ. Wisconsin, No. 27, Academic Press, New York, 1971, pp. 237–341. MR 0388177
Bibliographic Information
- Frédéric Bernard
- Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- Email: bernard@math.univ-montp2.fr
- Lionel Thibault
- Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- Email: thibault@math.univ-montp2.fr
- Nadia Zlateva
- Affiliation: Department of Mathematics and Informatics, Sofia University, 5 James Bourchier blvd., 1164 Sofia, Bulgaria
- Email: zlateva@fmi.uni-sofia.bg
- Received by editor(s): October 22, 2008
- Received by editor(s) in revised form: November 9, 2009
- Published electronically: November 16, 2010
- Additional Notes: The third author was partially supported by the Bulgarian National Fund for Scientific Research, contract DO 02-360/2008.
- © Copyright 2010 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 2211-2247
- MSC (2010): Primary 49J52, 58C06, 58C20; Secondary 90C30
- DOI: https://doi.org/10.1090/S0002-9947-2010-05261-4
- MathSciNet review: 2746681