Diffusive stability of oscillations in reaction-diffusion systems
HTML articles powered by AMS MathViewer
- by Thierry Gallay and Arnd Scheel
- Trans. Amer. Math. Soc. 363 (2011), 2571-2598
- DOI: https://doi.org/10.1090/S0002-9947-2010-05148-7
- Published electronically: December 20, 2010
- PDF | Request permission
Abstract:
We study nonlinear stability of spatially homogeneous oscillations in reaction-diffusion systems. Assuming absence of unstable linear modes and linear diffusive behavior for the neutral phase, we prove that spatially localized perturbations decay algebraically with the diffusive rate $t^{-n/2}$ in space dimension $n$. We also compute the leading order term in the asymptotic expansion of the solution and show that it corresponds to a spatially localized modulation of the phase. Our approach is based on a normal form transformation in the kinetics ODE which partially decouples the phase equation at the expense of making the whole system quasilinear. Stability is then obtained by a global fixed point argument in temporally weighted Sobolev spaces.References
- Igor S. Aranson and Lorenz Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys. 74 (2002), no. 1, 99–143. MR 1895097, DOI 10.1103/RevModPhys.74.99
- J. Bricmont and A. Kupiainen, Renormalization group and the Ginzburg-Landau equation, Comm. Math. Phys. 150 (1992), no. 1, 193–208. MR 1188504, DOI 10.1007/BF02096573
- J. Bricmont, A. Kupiainen, and G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 47 (1994), no. 6, 893–922. MR 1280993, DOI 10.1002/cpa.3160470606
- J. Buck and E. Buck. Synchronous fireflies. Scientific American 234 (1976), 74–79.
- Carmen Chicone, Ordinary differential equations with applications, 2nd ed., Texts in Applied Mathematics, vol. 34, Springer, New York, 2006. MR 2224508
- P. Collet and J.-P. Eckmann, Solutions without phase-slip for the Ginsburg-Landau equation, Comm. Math. Phys. 145 (1992), no. 2, 345–356. MR 1162802, DOI 10.1007/BF02099141
- P. Collet, J.-P. Eckmann, and H. Epstein, Diffusive repair for the Ginzburg-Landau equation, Helv. Phys. Acta 65 (1992), no. 1, 56–92. MR 1163235
- M. Cross and P. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (1993), 851–1123.
- Arjen Doelman, Björn Sandstede, Arnd Scheel, and Guido Schneider, The dynamics of modulated wave trains, Mem. Amer. Math. Soc. 199 (2009), no. 934, viii+105. MR 2507940, DOI 10.1090/memo/0934
- Jean-Pierre Eckmann, C. Eugene Wayne, and Peter Wittwer, Geometric stability analysis for periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys. 190 (1997), no. 1, 173–211. MR 1484552, DOI 10.1007/s002200050238
- Neil Fenichel, Asymptotic stability with rate conditions. II, Indiana Univ. Math. J. 26 (1977), no. 1, 81–93. MR 426056, DOI 10.1512/iumj.1977.26.26006
- Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966). MR 214914
- Thierry Gallay and Alexander Mielke, Diffusive mixing of stable states in the Ginzburg-Landau equation, Comm. Math. Phys. 199 (1998), no. 1, 71–97. MR 1660215, DOI 10.1007/s002200050495
- A.K. Ghosh, B. Chance, and E.K. Pye. Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. Arch. Biochem. Biophys. 145 (1971), 319–331.
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244, DOI 10.1007/BFb0089647
- Matthias Hieber and Sylvie Monniaux, Heat-kernels and maximal $L^p\text {-}L^q$-estimates: the non-autonomous case, J. Fourier Anal. Appl. 6 (2000), no. 5, 467–481. MR 1781089, DOI 10.1007/BF02511541
- Todd Kapitula, On the nonlinear stability of plane waves for the Ginzburg-Landau equation, Comm. Pure Appl. Math. 47 (1994), no. 6, 831–841. MR 1280990, DOI 10.1002/cpa.3160470603
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Alexander Mielke, The Ginzburg-Landau equation in its role as a modulation equation, Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 759–834. MR 1901066, DOI 10.1016/S1874-575X(02)80036-4
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Jan Prüss and Roland Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time, J. Math. Anal. Appl. 256 (2001), no. 2, 405–430. MR 1821747, DOI 10.1006/jmaa.2000.7247
- Jens D. M. Rademacher and Arnd Scheel, Instabilities of wave trains and Turing patterns in large domains, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 (2007), no. 8, 2679–2691. MR 2355524, DOI 10.1142/S0218127407018683
- Emmanuel Risler, Criteria for the stability of spatial extensions of fixed points and periodic orbits of differential equations in dimension 2, Phys. D 146 (2000), no. 1-4, 121–136. MR 1787408, DOI 10.1016/S0167-2789(00)00123-8
- Emmanuel Risler, A direct computation of the phase stability criterion for spatially homogeneous time periodic solutions close to a Hopf bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (2001), no. 8, 2097–2103. MR 1859191, DOI 10.1142/S0218127401003346
- Emmanuel Risler, Generic instability of spatial unfoldings of almost homoclinic periodic orbits, Comm. Math. Phys. 216 (2001), no. 2, 325–356. MR 1814850, DOI 10.1007/s002200000330
- F. Rogister, K. Thornburg, L. Fabiny, M. Müller, and R. Roy. Power-Law Spatial Correlations in Arrays of Locally Coupled Lasers. Phys. Rev. Lett. 92 (2004), 093905.
- Björn Sandstede and Arnd Scheel, Defects in oscillatory media: toward a classification, SIAM J. Appl. Dyn. Syst. 3 (2004), no. 1, 1–68. MR 2067899, DOI 10.1137/030600192
- Guido Schneider, Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation, Comm. Math. Phys. 178 (1996), no. 3, 679–702. MR 1395210, DOI 10.1007/BF02108820
- G. Schneider, Hopf bifurcation in spatially extended reaction-diffusion systems, J. Nonlinear Sci. 8 (1998), no. 1, 17–41. MR 1604562, DOI 10.1007/s003329900042
- Hannes Uecker, Diffusive stability of rolls in the two-dimensional real and complex Swift-Hohenberg equation, Comm. Partial Differential Equations 24 (1999), no. 11-12, 2109–2146. MR 1720762, DOI 10.1080/03605309908821496
- G. Veser, F. Mertens, A. S. Mikhailov, and R. Imbihl. Global coupling in the presence of defects: Synchronization in an oscillatory surface reaction. Phys. Rev. Lett. 71 (1993), 935–938.
- Arthur T. Winfree, The geometry of biological time, Biomathematics, vol. 8, Springer-Verlag, Berlin-New York, 1980. MR 572965, DOI 10.1007/978-3-662-22492-2
Bibliographic Information
- Thierry Gallay
- Affiliation: Institut Fourier, UMR CNRS 5582, BP 74, Université de Grenoble I, 38402 Saint-Martin-d’Hères, France
- Email: Thierry.Gallay@ujf-grenoble.fr
- Arnd Scheel
- Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
- MR Author ID: 319772
- ORCID: 0000-0001-6667-3003
- Email: scheel@umn.edu
- Received by editor(s): June 24, 2008
- Received by editor(s) in revised form: June 26, 2009
- Published electronically: December 20, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 2571-2598
- MSC (2010): Primary 35B35, 35B40, 35B10, 35K57
- DOI: https://doi.org/10.1090/S0002-9947-2010-05148-7
- MathSciNet review: 2763727