Representations of logmodular algebras
HTML articles powered by AMS MathViewer
- by Vern I. Paulsen and Mrinal Raghupathi
- Trans. Amer. Math. Soc. 363 (2011), 2627-2640
- DOI: https://doi.org/10.1090/S0002-9947-2010-05151-7
- Published electronically: December 28, 2010
- PDF | Request permission
Abstract:
We study the question of whether or not contractive representations of logmodular algebras are completely contractive. We prove that a 2-contractive representation of a logmodular algebra extends to a positive map on the enveloping $C^*$-algebra, which we show generalizes a result of Foias and Suciu on uniform logmodular algebras. Our proof uses non-commutative operator space generalizations of classical results on 2-summing maps and semi-spectral measures. We establish some matrix factorization results for uniform logmodular algebras.References
- Jim Agler, Rational dilation on an annulus, Ann. of Math. (2) 121 (1985), no. 3, 537–563. MR 794373, DOI 10.2307/1971209
- William Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208–233. MR 0383098, DOI 10.1016/0022-1236(75)90041-5
- David P. Blecher and Louis E. Labuschagne, Logmodularity and isometries of operator algebras, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1621–1646. MR 1946408, DOI 10.1090/S0002-9947-02-03195-1
- David P. Blecher and Louis E. Labuschagne, Noncommutative function theory and unique extensions, Studia Math. 178 (2007), no. 2, 177–195. MR 2285438, DOI 10.4064/sm178-2-4
- David P. Blecher and Vern I. Paulsen, Explicit construction of universal operator algebras and applications to polynomial factorization, Proc. Amer. Math. Soc. 112 (1991), no. 3, 839–850. MR 1049839, DOI 10.1090/S0002-9939-1991-1049839-7
- David P. Blecher, Zhong-Jin Ruan, and Allan M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89 (1990), no. 1, 188–201. MR 1040962, DOI 10.1016/0022-1236(90)90010-I
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- K. R. Davidson, V. I. Paulsen, and S. C. Power, Tree algebras, semidiscreteness, and dilation theory, Proc. London Math. Soc. (3) 68 (1994), no. 1, 178–202. MR 1243841, DOI 10.1112/plms/s3-68.1.178
- Edward G. Effros and Zhong-Jin Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), no. 2, 257–284. MR 1125226, DOI 10.1016/0022-1236(91)90111-H
- C. Foiaş and I. Suciu, On operator representation of logmodular algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 505–509 (English, with Russian summary). MR 238081
- Kenneth Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., New York, 1988. Reprint of the 1962 original. MR 1102893
- Kenneth Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271–317. MR 149330, DOI 10.1007/BF02545769
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- Michael J. McAsey and Paul S. Muhly, Representations of nonselfadjoint crossed products, Proc. London Math. Soc. (3) 47 (1983), no. 1, 128–144. MR 698930, DOI 10.1112/plms/s3-47.1.128
- W. Mlak, Decompositions and extensions of operator valued representations of function algebras, Acta Sci. Math. (Szeged) 30 (1969), 181–193. MR 285914
- Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR 1976867
- V. I. Paulsen and S. C. Power, Lifting theorems for nest algebras, J. Operator Theory 20 (1988), no. 2, 311–327. MR 1004126
- V. I. Paulsen, S. C. Power, and J. D. Ward, Semi-discreteness and dilation theory for nest algebras, J. Funct. Anal. 80 (1988), no. 1, 76–87. MR 960224, DOI 10.1016/0022-1236(88)90066-3
- A. Pietsch, Absolut $p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/67), 333–353 (German). MR 216328, DOI 10.4064/sm-28-3-333-353
- Gilles Pisier, The operator Hilbert space $\textrm {OH}$, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103. MR 1342022, DOI 10.1090/memo/0585
- W. Forrest Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216. MR 69403, DOI 10.1090/S0002-9939-1955-0069403-4
Bibliographic Information
- Vern I. Paulsen
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204
- MR Author ID: 137010
- ORCID: 0000-0002-2361-852X
- Email: vern@math.uh.edu
- Mrinal Raghupathi
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- Email: mrinal.raghupathi@vanderbilt.edu
- Received by editor(s): June 2, 2008
- Received by editor(s) in revised form: June 30, 2009
- Published electronically: December 28, 2010
- Additional Notes: This research was supported in part by NSF grant DMS-0600191.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 2627-2640
- MSC (2010): Primary 47L55; Secondary 47A67, 47A20
- DOI: https://doi.org/10.1090/S0002-9947-2010-05151-7
- MathSciNet review: 2763729