Uniqueness of Ginzburg-Rallis models: The Archimedean case
HTML articles powered by AMS MathViewer
- by Dihua Jiang, Binyong Sun and Chen-Bo Zhu
- Trans. Amer. Math. Soc. 363 (2011), 2763-2802
- DOI: https://doi.org/10.1090/S0002-9947-2010-05285-7
- Published electronically: December 21, 2010
- PDF | Request permission
Abstract:
In this paper we prove the uniqueness of Ginzburg-Rallis models in the Archimedean case. As a key ingredient, we introduce a new descent argument based on two geometric notions attached to submanifolds, which we call metrical properness and unipotent $\chi$-incompatibility.References
- Avraham Aizenbud and Dmitry Gourevitch, Schwartz functions on Nash manifolds, Int. Math. Res. Not. IMRN 5 (2008), Art. ID rnm 155, 37. MR 2418286, DOI 10.1093/imrn/rnm155
- Avraham Aizenbud and Dmitry Gourevitch, Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis’s theorem, Duke Math. J. 149 (2009), no. 3, 509–567. With an appendix by the authors and Eitan Sayag. MR 2553879, DOI 10.1215/00127094-2009-044
- Avraham Aizenbud and Dmitry Gourevitch, Multiplicity one theorem for $(\textrm {GL}_{n+1}(\Bbb R),\textrm {GL}_n(\Bbb R))$, Selecta Math. (N.S.) 15 (2009), no. 2, 271–294. MR 2529937, DOI 10.1007/s00029-009-0544-7
- A. Aizenbud, D. Gourevitch and H. Jacquet, Uniqueness of Shalika functionals: The Archimedean case, Pacific J. Math. 243 (2009), no. 2, 201-212.
- Avraham Aizenbud, Dmitry Gourevitch, Stephen Rallis, and Gérard Schiffmann, Multiplicity one theorems, Ann. of Math. (2) 172 (2010), no. 2, 1407–1434. MR 2680495, DOI 10.4007/annals.2010.172.1413
- Avraham Aizenbud, Dmitry Gourevitch, and Eitan Sayag, $(\textrm {GL}_{n+1}(F),\textrm {GL}_n(F))$ is a Gelfand pair for any local field $F$, Compos. Math. 144 (2008), no. 6, 1504–1524. MR 2474319, DOI 10.1112/S0010437X08003746
- Ehud Moshe Baruch and Stephen Rallis, On the uniqueness of Fourier Jacobi models for representations of $\textrm {U}(n,1)$, Represent. Theory 11 (2007), 1–15. MR 2276364, DOI 10.1090/S1088-4165-07-00298-1
- W. Casselman, Canonical extensions of Harish-Chandra modules to representations of $G$, Canad. J. Math. 41 (1989), no. 3, 385–438. MR 1013462, DOI 10.4153/CJM-1989-019-5
- William Casselman, Henryk Hecht, and Dragan Miličić, Bruhat filtrations and Whittaker vectors for real groups, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998) Proc. Sympos. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000, pp. 151–190. MR 1767896, DOI 10.1090/pspum/068/1767896
- Fokko du Cloux, Sur les représentations différentiables des groupes de Lie algébriques, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 3, 257–318 (French). MR 1100992, DOI 10.24033/asens.1628
- W. Gan, B. Gross and D. Prasad, Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups. arXiv:0909.2999
- D. Ginzburg and D. Jiang, Notes on Periods of Eisenstein series on $E_6$, in preparation.
- David Ginzburg, Dihua Jiang, and Stephen Rallis, On the nonvanishing of the central value of the Rankin-Selberg $L$-functions, J. Amer. Math. Soc. 17 (2004), no. 3, 679–722. MR 2053953, DOI 10.1090/S0894-0347-04-00455-2
- David Ginzburg, Dihua Jiang, and Stephen Rallis, On the nonvanishing of the central value of the Rankin-Selberg $L$-functions. II, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 157–191. MR 2192823, DOI 10.1515/9783110892703.157
- David Ginzburg, Dihua Jiang, and Stephen Rallis, Models for certain residual representations of unitary groups, Automorphic forms and $L$-functions I. Global aspects, Contemp. Math., vol. 488, Amer. Math. Soc., Providence, RI, 2009, pp. 125–146. MR 2522030, DOI 10.1090/conm/488/09567
- David Ginzburg and Stephen Rallis, The exterior cube $L$-function for $\textrm {GL}(6)$, Compositio Math. 123 (2000), no. 3, 243–272. MR 1795291, DOI 10.1023/A:1002461508749
- H. Glöckner and K.-H. Neeb, Infinite-dimensional Lie groups: General Theory and Main Examples, Graduate Texts in Mathematics, Springer-Verlag, book to appear.
- Benedict H. Gross and Dipendra Prasad, On the decomposition of a representation of $\textrm {SO}_n$ when restricted to $\textrm {SO}_{n-1}$, Canad. J. Math. 44 (1992), no. 5, 974–1002. MR 1186476, DOI 10.4153/CJM-1992-060-8
- Benedict H. Gross and Dipendra Prasad, On irreducible representations of $\textrm {SO}_{2n+1}\times \textrm {SO}_{2m}$, Canad. J. Math. 46 (1994), no. 5, 930–950. MR 1295124, DOI 10.4153/CJM-1994-053-4
- Michael Harris and Stephen S. Kudla, On a conjecture of Jacquet, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 355–371. MR 2058614
- Hervé Jacquet and Stephen Rallis, Uniqueness of linear periods, Compositio Math. 102 (1996), no. 1, 65–123. MR 1394521
- Hervé Jacquet and Joseph Shalika, Exterior square $L$-functions, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 143–226. MR 1044830
- Dihua Jiang, Residues of Eisenstein series and related problems, Eisenstein series and applications, Progr. Math., vol. 258, Birkhäuser Boston, Boston, MA, 2008, pp. 187–204. MR 2402684, DOI 10.1007/978-0-8176-4639-4_{6}
- D. Jiang, B. Sun and C.-B. Zhu, Uniqueness of Bessel models: The Archimedean case, Geom. Funct. Anal. 20 (2010), 690-709.
- Hung Yean Loke, Trilinear forms of $\mathfrak {gl}_2$, Pacific J. Math. 197 (2001), no. 1, 119–144. MR 1810211, DOI 10.2140/pjm.2001.197.119
- Soo Teck Lee and Chen-Bo Zhu, Degenerate principal series and local theta correspondence. II, Israel J. Math. 100 (1997), 29–59. MR 1469104, DOI 10.1007/BF02773634
- Chufeng Nien, Models of representations of general linear groups over p-adic fields, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–University of Minnesota. MR 2709083
- Dipendra Prasad, Trilinear forms for representations of $\textrm {GL}(2)$ and local $\epsilon$-factors, Compositio Math. 75 (1990), no. 1, 1–46. MR 1059954
- Tomasz Przebinda, The oscillator duality correspondence for the pair $\textrm {O}(2,2),\;\textrm {Sp}(2,\textbf {R})$, Mem. Amer. Math. Soc. 79 (1989), no. 403, x+105. MR 979944, DOI 10.1090/memo/0403
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171–193. MR 348047, DOI 10.2307/1971071
- Masahiro Shiota, Nash manifolds, Lecture Notes in Mathematics, vol. 1269, Springer-Verlag, Berlin, 1987. MR 904479, DOI 10.1007/BFb0078571
- B. Sun and C.-B. Zhu, A general form of Gelfand-Kazhdan criterion. ArXiv:0903.1409
- B. Sun and C.-B. Zhu, Multiplicity One Theorems: The Archimedean case. ArXiv:0903.1413
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Nolan R. Wallach, Real reductive groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992. MR 1170566
Bibliographic Information
- Dihua Jiang
- Affiliation: School of Mathematics, University of Minnesota, 206 Church Street, S.E., Minneapolis, Minnesota 55455
- MR Author ID: 260974
- Email: dhjiang@math.umn.edu
- Binyong Sun
- Affiliation: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
- MR Author ID: 805605
- Email: sun@math.ac.cn
- Chen-Bo Zhu
- Affiliation: Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
- MR Author ID: 305157
- ORCID: 0000-0003-3819-1458
- Email: matzhucb@nus.edu.sg
- Received by editor(s): April 16, 2009
- Received by editor(s) in revised form: December 22, 2009
- Published electronically: December 21, 2010
- Additional Notes: The first author was supported in part by NSF (USA) grant DMS–0653742 and by a Distinguished Visiting Professorship at the Academy of Mathematics and System Sciences, the Chinese Academy of Sciences
The second author was supported by NUS-MOE grant R-146-000-102-112 and by NSFC grants 10801126 and 10931006
The third author was supported by NUS-MOE grant R-146-000-102-112 - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 2763-2802
- MSC (2000): Primary 22E46; Secondary 11F70
- DOI: https://doi.org/10.1090/S0002-9947-2010-05285-7
- MathSciNet review: 2763736