Frobenius actions on the de Rham cohomology of Drinfeld modules
HTML articles powered by AMS MathViewer
- by Ernst-Ulrich Gekeler
- Trans. Amer. Math. Soc. 363 (2011), 3167-3183
- DOI: https://doi.org/10.1090/S0002-9947-2011-05422-X
- Published electronically: January 27, 2011
- PDF | Request permission
Abstract:
We study the action of endomorphisms of a Drinfeld $A$-module $\phi$ on its de Rham cohomology $H_{DR}(\phi ,L)$ and related modules, in the case where $\phi$ is defined over a field $L$ of finite $A$-characteristic $\frak p$. Among others, we find that the nilspace $H_0$ of the total Frobenius $Fr_{DR}$ on $H_{DR}(\phi ,L)$ has dimension $h =$ height of $\phi$. We define and study a pairing between the $\frak p$-torsion $_{\frak p}\phi$ of $\phi$ and $H_{DR}(\phi ,L)$, which becomes perfect after dividing out $H_0$.References
- Bruno Angles, On some characteristic polynomials attached to finite Drinfeld modules, Manuscripta Math. 93 (1997), no. 3, 369–379. MR 1457735, DOI 10.1007/BF02677478
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- Pierre Deligne and Dale Husemoller, Survey of Drinfel′d modules, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 25–91. MR 902591, DOI 10.1090/conm/067/902591
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 0384707
- Gardeyn, F.: $t$-motives and Galois representations. Doctoral Thesis, Universiteit Gent and ETH Zürich, 2001.
- Ernst-Ulrich Gekeler, On the coefficients of Drinfel′d modular forms, Invent. Math. 93 (1988), no. 3, 667–700. MR 952287, DOI 10.1007/BF01410204
- Ernst-Ulrich Gekeler, de Rham cohomology for Drinfel′d modules, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 57–85. MR 1104700
- Ernst-Ulrich Gekeler, On the de Rham isomorphism for Drinfel′d modules, J. Reine Angew. Math. 401 (1989), 188–208. MR 1018059, DOI 10.1515/crll.1989.401.188
- Ernst-Ulrich Gekeler, On finite Drinfel′d modules, J. Algebra 141 (1991), no. 1, 187–203. MR 1118323, DOI 10.1016/0021-8693(91)90211-P
- Ernst-Ulrich Gekeler, Frobenius distributions of Drinfeld modules over finite fields, Trans. Amer. Math. Soc. 360 (2008), no. 4, 1695–1721. MR 2366959, DOI 10.1090/S0002-9947-07-04558-8
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- Helmut Hasse and Ernst Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade $p$ über einem algebraischen Funktionenkörper der Charakteristik $p$, Monatsh. Math. Phys. 43 (1936), no. 1, 477–492 (German). MR 1550551, DOI 10.1007/BF01707628
- Richard Pink and Matthias Traulsen, The isogeny conjecture for $t$-motives associated to direct sums of Drinfeld modules, J. Number Theory 117 (2006), no. 2, 355–375. MR 2213770, DOI 10.1016/j.jnt.2005.06.014
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657, DOI 10.1007/978-1-4757-6046-0
- Schmid, H.L, Witt, E.: Unverzweigte abelsche Körper vom Exponenten $p^n$ über einem algebraischen Funktionenkörper der Charakteristik $p$. J. Reine Angew. Math. 176 (1936), 168–173.
- Jean-Pierre Serre, Sur la topologie des variétés algébriques en caractéristique $p$, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 24–53 (French). MR 0098097
- Yuichiro Taguchi, Semi-simplicity of the Galois representations attached to Drinfel′d modules over fields of “infinite characteristics”, J. Number Theory 44 (1993), no. 3, 292–314. MR 1233291, DOI 10.1006/jnth.1993.1055
Bibliographic Information
- Ernst-Ulrich Gekeler
- Affiliation: FR 6.1 Mathematik, E2 4, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany
- Email: gekeler@math.uni-sb.de
- Received by editor(s): July 20, 2009
- Published electronically: January 27, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 3167-3183
- MSC (2010): Primary 11G09; Secondary 11R58
- DOI: https://doi.org/10.1090/S0002-9947-2011-05422-X
- MathSciNet review: 2775802