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LAW OF LARGE NUMBERS FOR THE MAXIMAL FLOW

THROUGH A DOMAIN OF R
d

IN FIRST PASSAGE PERCOLATION

RAPHAËL CERF AND MARIE THÉRET

Abstract. We consider the standard first passage percolation model in the
rescaled graph Z

d/n for d ≥ 2, and a domain Ω of boundary Γ in R
d. Let Γ1

and Γ2 be two disjoint open subsets of Γ, representing the parts of Γ through
which some water can enter and escape from Ω. We investigate the asymptotic
behaviour of the flow φn through a discrete version Ωn of Ω between the
corresponding discrete sets Γ1

n and Γ2
n. We prove that under some conditions

on the regularity of the domain and on the law of the capacity of the edges,
φn converges almost surely towards a constant φΩ, which is the solution of
a continuous non-random min-cut problem. Moreover, we give a necessary
and sufficient condition on the law of the capacity of the edges to ensure that
φΩ > 0.

1. First definitions and main result

We use many notation introduced in [18] and [19]. Let d ≥ 2. We consider the
graph (Zd

n,E
d
n) having for vertices Zd

n = Z
d/n and for edges Ed

n the set of pairs of
nearest neighbours for the standard L1 norm. With each edge e in E

d
n we associate a

random variable t(e) with values in R
+. We suppose that the family (t(e), e ∈ E

d
n) is

independent and identically distributed, with a common law Λ: this is the standard
model of first passage percolation on the graph (Zd

n,E
d
n). We interpret t(e) as the

capacity of the edge e; it means that t(e) is the maximal amount of fluid that can
go through the edge e per unit of time.

We consider an open bounded connected subset Ω of Rd such that the boundary
Γ = ∂Ω of Ω is piecewise of class C1 (in particular Γ has finite area: Hd−1(Γ) < ∞).
It means that Γ is included in the union of a finite number of hypersurfaces of class
C1, i.e., in the union of a finite number of C1 submanifolds of Rd of codimension 1.
Let Γ1, Γ2 be two disjoint subsets of Γ that are open in Γ. We want to define
the maximal flow from Γ1 to Γ2 through Ω for the capacities (t(e), e ∈ E

d
n). We

consider a discrete version (Ωn,Γn,Γ
1
n,Γ

2
n) of (Ω,Γ,Γ

1,Γ2) defined by
⎧
⎨

⎩

Ωn = {x ∈ Z
d
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ E
d
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,
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where d∞ is the L∞-distance and the notation 〈x, y〉 corresponds to the edge of
endpoints x and y (see Figure 1).

Γ2
Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1. Domain Ω.

We shall study the maximal flow from Γ1
n to Γ2

n in Ωn. Let us properly define the
maximal flow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R

d (or by commodity
the corresponding graph C ∩Z

d/n). We will say that an edge e = 〈x, y〉 belongs to
a subset A of Rd, which we denote by e ∈ A, if the interior of the segment joining

x to y is included in A. We define Ẽ
d
n as the set of all the oriented edges; i.e., an

element ẽ in Ẽ
d
n is an ordered pair of vertices which are nearest neighbours. We

denote an element ẽ ∈ Ẽ
d
n by 〈〈x, y〉〉, where x, y ∈ Z

d
n are the endpoints of ẽ and

the edge is oriented from x towards y. We consider the set S of all pairs of functions

(g, o), with g : Ed
n → R

+ and o : Ed
n → Ẽ

d
n such that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉},

satisfying:

• for each edge e in C we have

0 ≤ g(e) ≤ t(e) ,

• for each vertex v in C � (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉
g(e) =

∑

e∈C : o(e)=〈〈·,v〉〉
g(e) ,

where the notation o(e) = 〈〈v, .〉〉 (respectively o(e) = 〈〈., v〉〉) means that there
exists y ∈ Z

d
n such that e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respectively o(e) = 〈〈y, v〉〉).

A couple (g, o) ∈ S is a possible stream in C from F1 to F2: g(e) is the amount of
fluid that goes through the edge e, and o(e) gives the direction in which the fluid
goes through e. The two conditions on (g, o) express only the fact that the amount
of fluid that can go through an edge is bounded by its capacity and that there is no
loss of fluid in the graph. With each possible stream we associate the corresponding
flow

flow(g, o) =
∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)�o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)�o(〈u,v〉)=〈〈v,u〉〉 .
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This is the amount of fluid that crosses C from F1 to F2 if the fluid respects the
stream (g, o). The maximal flow through C from F1 to F2 is the supremum of this
quantity over all possible choices of streams

φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .
We denote by

φn = φ(Γ1
n → Γ2

n in Ωn)

the maximal flow from Γ1
n to Γ2

n in Ωn. We will investigate the asymptotic behaviour
of φn/n

d−1 when n goes to infinity. More precisely, we will show that (φn/n
d−1)n≥1

converges towards a constant φΩ (depending on Ω, Γ1, Γ2, Λ and d) when n goes
to infinity and that this constant is strictly positive if and only if Λ(0) < 1− pc(d),
where pc(d) is the critical parameter for the bond percolation on Z

d. The description
of φΩ will be given in section 2. Here we state the precise theorem:

Theorem 1. We suppose that Ω is a Lipschitz domain and that Γ is included in
the union of a finite number of oriented hypersurfaces S1, ...,Sr of class C1 which
are transverse to each other. We also suppose that Γ1 and Γ2 are open in Γ, that
their relative boundaries ∂ΓΓ

1 and ∂ΓΓ
2 in Γ have null Hd−1 measure, and that

d(Γ1,Γ2) > 0. We suppose that the law Λ of the capacity of an edge admits an
exponential moment:

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ .

Then there exists a finite constant φΩ ≥ 0 such that

lim
n→∞

φn

nd−1
= φΩ a.s.

Moreover, this equivalence holds:

φΩ > 0 ⇐⇒ Λ(0) < 1− pc(d) .

Remark 1. In the two companion papers [7] and [8], we prove in fact that the lower
large deviations of φn/n

d−1 below φΩ are of surface order and that the upper large
deviations of φn/n

d−1 above φΩ are of volume order (see section 3.2 where these
results are presented).

2. Computation of φΩ

2.1. Geometric notation. We start with some geometric definitions. For a subset
X of Rd, we denote by Hs(X) the s-dimensional Hausdorff measure of X (we will
use s = d− 1 and s = d− 2). The r-neighbourhood Vi(X, r) of X for the distance
di, that can be the Euclidean distance if i = 2 or the L∞-distance if i = ∞, is
defined by

Vi(X, r) = {y ∈ R
d | di(y,X) < r} .

If X is a subset of Rd included in a hyperplane of Rd and of codimension 1 (for
example a non-degenerate hyperrectangle), we denote by hyp(X) the hyperplane
spanned by X, and we denote by cyl(X,h) the cylinder of basis X and of height
2h defined by

cyl(X,h) = {x+ tv |x ∈ X , t ∈ [−h, h]} ,
where v is one of the two unit vectors orthogonal to hyp(X) (see Figure 2). For
x ∈ R

d, r ≥ 0 and a unit vector v, we denote by B(x, r) the closed ball centered at
x of radius r, by disc(x, r, v) the closed disc centered at x of radius r and normal
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v

x X

Figure 2. Cylinder cyl(X,h).

vector v, and by hyp(x, v) the hyperplane containing x and orthogonal to v. We
denote by αd the volume of a unit ball in R

d and by αd−1 the Hd−1 measure of a
unit disc.

2.2. Flow in a cylinder. Here are some particular definitions of flows through a
box. Let A be a non-degenerate hyperrectangle, i.e., a box of dimension d−1 in R

d.
All hyperrectangles will be assumed to be closed in R

d. We denote by v one of the
two unit vectors orthogonal to hyp(A). For h a positive real number, we consider
the cylinder cyl(A, h). The set cyl(A, h)� hyp(A) has two connected components,
which we denote by C1(A, h) and C2(A, h). For i = 1, 2, let Ah

i be the set of the
points in Ci(A, h) ∩ Z

d
n which have a nearest neighbour in Z

d
n � cyl(A, h):

Ah
i = {x ∈ Ci(A, h) ∩ Z

d
n | ∃y ∈ Z

d
n � cyl(A, h) , 〈x, y〉 ∈ E

d
n} .

Let T (A, h) (respectively B(A, h)) be the top (respectively the bottom) of cyl(A, h);
i.e.,

T (A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 intersects A+hv}

and

B(A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h) , 〈x, y〉∈E
d
n and 〈x, y〉 intersects A− hv}.

For a given realisation (t(e), e ∈ E
d
n) we define the variable τ (A, h) = τ (cyl(A, h), v)

by

τ (A, h) = τ (cyl(A, h), v) = φ(Ah
1 → Ah

2 in cyl(A, h))

and the variable φ(A, h) = φ(cyl(A, h), v) by

φ(A, h) = φ(cyl(A, h), v) = φ(B(A, h) → T (A, h) in cyl(A, h)) ,

where φ(F1 → F2 in C) is the maximal flow from F1 to F2 in C, for C ⊂ R
d (or by

commodity the corresponding graph C∩Z
d/n) defined previously. The dependence

in n is implicit here. In fact we can also write τn(A, h) and φn(A, h) if we want to
emphasize this dependence on the mesh of the graph.



LAW OF LARGE NUMBERS FOR THE MAXIMAL FLOW 3669

2.3. Max-flow min-cut theorem. The maximal flow φ(F1 → F2 in C) can be
expressed differently thanks to the max-flow min-cut theorem (see [5]). We need
some definitions to state this result. A path on the graph Z

d
n from v0 to vm is a

sequence (v0, e1, v1, ..., em, vm) of vertices v0, ..., vm alternating with edges e1, ..., em
such that vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in
{1, ...,m}. A set E of edges in C is said to cut F1 from F2 in C if there is no path
from F1 to F2 in C � E. We call E an (F1, F2)-cut if E cuts F1 from F2 in C and
if no proper subset of E does. With each set E of edges we associate its capacity,
which is the variable

V (E) =
∑

e∈E

t(e) .

The max-flow min-cut theorem states that

φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-cut } .

In fact, as we will see in section 2.5, φΩ is a continuous equivalent of the discrete
min-cut.

2.4. Definition of ν. The asymptotic behaviour of the rescaled expectation of
τn(A, h) for large n is well known, thanks to the almost subadditivity of this vari-
able. We recall the following result:

Theorem 2. We suppose that
∫

[0,+∞[

x dΛ(x) < ∞ .

Then for each unit vector v there exists a constant ν(d,Λ, v) = ν(v) (the depen-
dence on d and Λ is implicit) such that for every non-degenerate hyperrectangle A
orthogonal to v and for every strictly positive constant h, we have

lim
n→∞

E[τn(A, h)]

nd−1Hd−1(A)
= ν(v) .

For a proof of this proposition, see [25]. We emphasize the fact that the limit
depends on the direction of v, but not on h or on the hyperrectangle A itself.

We recall some geometric properties of the map ν : v ∈ Sd−1 �→ ν(v), under the
only condition on Λ that E(t(e)) < ∞. They have been stated in section 4.4 of [25].
There exists a unit vector v0 such that ν(v0) = 0 if and only if for all unit vectors
v, ν(v) = 0, and this happens if and only if Λ({0}) ≥ 1− pc(d). This property has
been proved by Zhang in [27]. Moreover, ν satisfies the weak triangle inequality;
i.e., if (ABC) is a non-degenerate triangle in R

d and vA, vB and vC are the exterior
normal unit vectors to the sides [BC], [AC], [AB] in the plane spanned by A, B,
C, then

H1([AB])ν(vC) ≤ H1([AC])ν(vB) +H1([BC])ν(vA) .

This implies that the homogeneous extension ν0 of ν to R
d, defined by ν0(0) = 0

and for all w in R
d,

ν0(w) = |w|2ν(w/|w|2) ,
is a convex function; in particular, since ν0 is finite, it is continuous on R

d. We
denote by νmin (respectively νmax) the infimum (respectively supremum) of ν on
Sd−1.
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2.5. Continuous min-cut. Here we give a definition of φΩ and of another constant

φ̃Ω in terms of the map ν. For a subset F of Rd, we define the perimeter of F in Ω
by

P(F,Ω) = sup

ß∫
F

div f(x)dLd(x), f ∈ C∞
c (Ω, B(0, 1))

™
,

where C∞
c (Ω, B(0, 1)) is the set of the functions of class C∞ from R

d to B(0, 1), the
ball centered at 0 and of radius 1 in R

d, having a compact support included in Ω,
and div is the usual divergence operator. The perimeter P(F ) of F is defined as
P(F,Rd). We denote by ∂F the boundary of F and by ∂∗F the reduced boundary
of F . At any point x of ∂∗F , the set F admits a unit exterior normal vector vF (x)
at x in a measure theoretic sense (for definitions see for example [9], section 13).
For all F ⊂ R

d of finite perimeter in Ω, we define

IΩ(F ) =

∫

∂∗F∩Ω

ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗(F∩Ω)

ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂∗(Ω�F )

ν(vΩ(x))dHd−1(x) .

If P(F,Ω) = +∞, we define IΩ(F ) = +∞. Finally, we define

φΩ = inf{IΩ(F ) |F ⊂ R
d} = inf{IΩ(F ) |F ⊂ Ω} .

In the case where ∂F is C1, IΩ(F ) has the following simpler expression:

IΩ(F ) =

∫

∂F∩Ω

ν(vF (x))dHd−1(x) +

∫

Γ2∩∂(F∩Ω)

ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂(Ω�F )

ν(vΩ(x))dHd−1(x) .

The localization of the set along which the previous integrals are done is illustrated
in Figure 3.

Γ2Γ1

Ω

vF (x)

x

F

vΩ(z)

z

v(F∩Ω)(y)

y

(∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω� F ))

Figure 3. The set (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω� F )).

When a hypersurface S is piecewise of class C1, we say that S is transverse to
Γ if for all x ∈ S ∩ Γ, the normal unit vectors to S and Γ at x are not collinear.
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If the normal vector to S (respectively to Γ) at x is not well defined, this property
must be satisfied by all the vectors which are limits of normal unit vectors to S
(respectively Γ) at y ∈ S (respectively y ∈ Γ) when we send y to x - there is at
most a finite number of such limits. We say that a subset P of Rd is polyhedral
if its boundary ∂P is included in the union of a finite number of hyperplanes. For
each point x of such a set P which is on the interior of one face of ∂P , we denote
by vP (x) the exterior unit vector orthogonal to P at x. For A ⊂ R

d, we denote by
◦
A the interior of A. We define φ̃Ω by

φ̃Ω = inf

⎧
⎨

⎩
IΩ(P )

∣
∣
∣
∣
∣

P ⊂ R
d , Γ1 ⊂

◦
P , Γ2 ⊂

◦�̊
Rd � P

P is polyhedral , ∂P is transverse to Γ

⎫
⎬

⎭
.

Notice that if P is a set such that

Γ1 ⊂
◦
P and Γ2 ⊂

◦�̊
Rd � P ,

then

IΩ(P ) =

∫

∂P∩Ω

ν(vP (x))dHd−1(x) .

See Figure 4 for an example of such a polyhedral set P .

Γ2vP (x)

Γ1 Ω

∂P

∂Ω

P

x

Figure 4. A polyhedral set P as in the definition of φ̃Ω.

The definitions of the constants φΩ and φ̃Ω are not very intuitive. We propose
to define the notion of a continuous cutset to have a better understanding of these
constants. We say that S ⊂ R

d cuts Γ1 from Γ2 in Ω if every continuous path from
Γ1 to Γ2 in Ω intersects S. In fact, if P is a polyhedral set of Rd such that

Γ1 ⊂
◦
P and Γ2 ⊂

◦�̊
Rd � P ,

then ∂P ∩ Ω is a continuous cutset from Γ1 to Γ2 in Ω. Since ν(v) is the average
amount of fluid that can cross a hypersurface of area one in the direction v per
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unit of time, it can be interpreted as the capacity of a unitary hypersurface. Thus
IΩ(P ) can be interpreted as the capacity of the continuous cutset ∂P ∩ Ω. The

constant φ̃Ω is the solution of a min-cut problem, because it is equal to the infimum
of the capacity of a continuous cutset that satisfies some specific properties. We
can define two other constants that are solutions of possibly more intuitive min-cut
problems. If S is a hypersurface which is piecewise of class C1, we denote by vS(x)
one of the two normal unit vectors to S at x for every point x at which S is regular.
The Hd−1 measure of the points at which S is not regular is null. We define

φ̂Ω = inf

{∫

S∩Ω

ν(vS(x))dHd−1(x)

∣
∣
∣
∣
∣

S hypersurface piecewise of class C1

S cuts Γ1 from Γ2 in Ω

}

and

ËφΩ = inf

{∫

S∩Ω

ν(vS(x))dHd−1(x)

∣
∣
∣
∣
∣

S polyhedral hypersurface
S cuts Γ1 from Γ2 in Ω

}

.

We remark that by definition,

φ̂Ω ≤ ËφΩ ≤ φ̃Ω .

We claim that φΩ ≤ φ̂Ω. Let S be a hypersurface which is piecewise of class C1,
which cuts Γ1 from Γ2 in Ω, and such that

∫

S∩Ω

ν(vS(x))dHd−1(x) ≤ φ̂Ω + η

for some positive η. Let F be the set of the points of Ω� S that can be joined to
a point of Γ1 by a continuous path. Then

(∂F ∩ Ω) ∪ (Γ1 ∩ ∂(Ω� F )) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ⊂ S ∩ Ω .

Thus F is of finite perimeter in Ω and IΩ(F ) satisfies

IΩ(F ) ≤
∫

S∩Ω

ν(vS(x))dHd−1(x) ≤ φ̂Ω + η .

Thus we have proved that

φΩ ≤ φ̂Ω ≤ ËφΩ ≤ φ̃Ω .

3. State of the art

3.1. Existing laws of large numbers. Only in this section do we consider the
standard first passage percolation model on the graph (Zd,Ed) instead of the
rescaled graph (Zd

n,E
d
n). Here we present some laws of large numbers that have

been proved about maximal flows.
Using a subadditive argument and concentration inequalities, Rossignol and

Théret have proved in [25] that τ (nA, h(n)) satisfies a law of large numbers:

Theorem 3 (Rossignol and Théret). We suppose that
∫

[0,∞[

x dΛ(x) < ∞ .
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For every unit vector v, for every non-degenerate hyperrectangle A orthogonal to v,
and for every height function h : N → R

+ satisfying limn→∞ h(n) = +∞ we have

lim
n→∞

τ (nA, h(n))

Hd−1(nA)
= ν(v) in L1 .

Moreover, if the origin of the graph belongs to A or if
∫

[0,∞[

x1+ 1
d−1 dΛ(x) < ∞ ,

then

lim
n→∞

τ (nA, h(n))

Hd−1(nA)
= ν(v) a.s.

Kesten, Zhang, Rossignol and Théret have studied the maximal flow between the
top and the bottom of straight cylinders. Let us denote by D(k,m) the cylinder

D(k,m) =
d−1∏

i=1

[0, ki]× [0,m] ,

where k = (k1, ..., kd−1) ∈ R
d−1. We denote by φ(k,m) the maximal flow in

D(k,m) from its top
∏d−1

i=1 [0, ki] × {m} to its bottom
∏d−1

i=1 [0, ki] × {0}. Kesten
proved in [19] the following result:

Theorem 4 (Kesten). Let d = 3. We suppose that Λ(0) < p0 for some fixed
p0 ≥ 1/27 and that

∃γ > 0

∫

[0,+∞[

eγx dΛ(x) < ∞ .

If m = m(k) goes to infinity with k1 ≥ k2 in such a way that

∃δ > 0 lim
k1≥k2→∞

k−1+δ logm(k) = 0 ,

then

lim
k1≥k2→∞

φ(k,m)

k1k2
= ν((0, 0, 1)) a.s. and in L1 .

Moreover, if Λ(0) > 1−pc(d), where pc(d) is the critical parameter for the standard
bond percolation model on Z

d, and if
∫

[0,+∞[

x6 dΛ(x) < ∞ ,

there exists a constant C = C(F ) < ∞ such that for all m = m(k) that goes to
infinity with k1 ≥ k2 and satisfies

lim inf
k1≥k2→∞

m(k)

k1k2
> C ,

for all k1 ≥ k2 sufficiently large, we have

φ(k,m) = 0 a.s.

Zhang improved this result in [28] where he proved the following theorem.
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Theorem 5 (Zhang). Let d ≥ 2. We suppose that

∃γ > 0

∫

[0,+∞[

eγx dΛ(x) < ∞ .

Then for all m = m(k) that goes to infinity when all the ki, i = 1, ..., d − 1, go to
infinity in such a way that

∃δ ∈]0, 1] logm(k) ≤ max
i=1,...,d−1

k1−δ
i ,

we have

lim
k1,...,kd−1→∞

φ(k,m)
∏d−1

i=1 ki
= ν((0, ..., 0, 1)) a.s. and in L1 .

Moreover, this limit is positive if and only if Λ(0) < 1− pc(d).

To show this theorem, Zhang first obtains an important control on the number of
edges in a minimal cutset. Finally, Rossignol and Théret improved Zhang’s result in
[25] in the particular case where the dimensions of the basis of the straight cylinder
go to infinity all at the same speed. They obtain the following result:

Theorem 6 (Rossignol and Théret). We suppose that
∫

[0,∞[

x dΛ(x) < ∞ .

For every straight hyperrectangle

A =
d−1∏

i=1

[0, ai]× {0}

with ai>0 for all i and for every height function h : N → R
+ satisfying limn→∞ h(n)

= +∞ and limn→∞ log h(n)/nd−1 = 0, we have

lim
n→∞

φ(nA, h(n))

Hd−1(nA)
= ν((0, ..., 0, 1)) a.s. and in L1 .

In dimension two, more results are known. Here we present two of them. Rossig-
nol and Théret have studied in [24] the maximal flow from the top to the bottom
of a tilted cylinder in dimension two, and they have proved the following theorem
(Corollary 2.10 in [24]):

Theorem 7 (Rossignol and Théret). Let v be a unit vector, A a non-degenerate
line-segment orthogonal to v, and h : N → R

+ a height function satisfying
limn→∞ h(n) = +∞ and limn→∞ log h(n)/n = 0. We suppose that there exists
α ∈ [0, π/2] such that

lim
n→∞

2h(n)

H1(nA)
= tanα .

Then, if ∫

[0,∞[

x dΛ(x) < ∞ ,

we have

lim
n→∞

φ(nA, h(n))

H1(nA)
= inf

ß
ν(v′)

v · v′
∣
∣
∣ v′ satisfies v · v′ ≥ cosα

™
in L1 .
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Moreover, if the origin of the graph is the middle of A or if
∫

[0,∞[

x2 dΛ(x) < ∞ ,

then we have

lim
n→∞

φ(nA, h(n))

H1(nA)
= inf

ß
ν(v′)

v · v′
∣
∣
∣ v′ satisfies v · v′ ≥ cosα

™
a.s.

In [15] Garet studied the maximal flow σ(A) between a convex bounded set A
and infinity in the case d = 2. By an extension of the max-flow min-cut theorem
to non-finite graphs, in [15] Garet proves that this maximal flow is equal to the
minimal capacity of a set of edges that cuts all paths from A to infinity. Let ∂A be
the boundary of A, and let ∂∗A be the set of the points x ∈ ∂A at which A admits
a unique exterior normal unit vector vA(x) in a measure theoretic sense (see [9],
section 13, for a precise definition). If A is a convex set, the set ∂∗A is also equal
to the set of the points x ∈ ∂A at which A admits a unique exterior normal vector
in the classical sense, and this vector is vA(x). Garet proved the following theorem:

Theorem 8 (Garet). Let d = 2. We suppose that Λ(0) < 1− pc(2) = 1/2 and that

∃γ > 0

∫

[0,+∞[

eγx dΛ(x) < ∞ .

Then for each convex bounded set A containing 0 in its interior, we have

lim
n→∞

σ(nA)

n
=

∫

∂∗A

ν(vA(x))dH1(x) = I(A) > 0 a.s.

Moreover, for all ε > 0, there exist constants C1, C2 > 0 depending on ε and Λ
such that

∀n ≥ 0 P

ï
σ(nA)

nI(A)
/∈]1− ε, 1 + ε[

ò
≤ C1 exp(−C2n) .

Nevertheless, a law of large numbers for the maximal flow from the top to the
bottom of a tilted cylinder for d ≥ 3 was not yet proved. In fact, the lack of
symmetry of the graph induced by the slope of the box is a major issue to extend
the existing results concerning straight cylinders to tilted cylinders. The theorem
of Garet was not extended to dimension d ≥ 3 either. Theorem 1 applies to the
maximal flow from the top to the bottom of a tilted cylinder. Thus it is a generali-
sation of the laws of large numbers of Kesten, Zhang, Rossignol and Théret for the
variable φ in straight cylinders, in the particular case where all the dimensions of
the cylinder go to infinity at the same speed (or, equivalently, the cylinder is fixed
and the mesh of the graph go to zero isotropically). Moreover, it gives a hint of
what could be a generalisation of the result of Garet in higher dimension, all the
more since the expression of the constant φΩ is reminiscent of the value of the limit
in Garet’s Theorem: the capacity IΩ of a continuous cutset is exactly the same
as the one defined by Garet in [15] in dimension two, except that we consider a
maximal flow through a bounded domain, so our capacity is adapted to deal with
specific boundary conditions.

From now on, we work in the rescaled graph (Zd
n,E

d
n).
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3.2. Large deviations for φn. Here we present the two existing results concerning
φn. We consider an open bounded connected subset Ω of Rd, whose boundary Γ is
piecewise of class C1, and two disjoint open subsets Γ1 and Γ2 of Γ. The first result
states that the lower large deviations below φΩ are of surface order and is proved
by the authors in [7]:

Theorem 9. If the law Λ of the capacity of an edge admits an exponential moment,

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,

and if Λ(0) < 1− pc(d), then for all λ < φΩ,

lim sup
n→∞

1

nd−1
logP[φn ≤ λnd−1] < 0 .

The second result states that the upper large deviations of φn above φ̃Ω are of
volume order and is proved by the authors in [8]:

Theorem 10. We suppose that d(Γ1,Γ2) > 0. If the law Λ of the capacity of an
edge admits an exponential moment,

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,

then for all λ > φ̃Ω,

lim sup
n→∞

1

nd
logP[φn ≥ λnd−1] < 0 .

By a simple Borel-Cantelli lemma, these results imply that if Λ admits an expo-
nential moment and if d(Γ1,Γ2) > 0, then

φΩ ≤ lim inf
n→∞

φn

n
≤ lim sup

n→∞

φn

n
≤ φ̃Ω .

Notice here that Theorem 9 allows us to obtain the first inequality only under the
additional hypothesis that Λ(0) < 1− pc(d). However, if Λ(0) ≥ 1− pc(d) we know
that ν(v) = 0 for all v, so φΩ = 0 and the first inequality remains valid.

Thus, to prove Theorem 1, it remains to prove that φΩ = φ̃Ω and to study

the positivity of φΩ. The equality φΩ = φ̃Ω is a consequence of a polyhedral
approximation of sets having finite perimeter that will be done in section 4. The
positivity of φΩ is proved in section 5, using tools of differential geometry such as the
tubular neighbourhood of paths. These two results are proved by purely geometrical
studies. Since the probabilistic part of the proof of Theorem 1 is contained in
Theorems 9 and 10, we propose a sketch of the proofs of these two theorems in
sections 3.2.1 and 3.2.2 to help in the understanding of the law of large numbers
proved in this paper.

Before these two sketches of proofs, we would like to make two remarks. The
first one is that the large deviations that are obtained in Theorems 9 and 10 are of
relevant order. Indeed, if all the edges in Ωn have a capacity which is abnormally
large, then the maximal flow φn will be abnormally large, too. The probability
for these edges to have an abnormally large capacity is of order exp−Cnd for a
constant C, because the number of edges in Ωn is C ′nd for a constant C ′. On the
other hand, if all the edges in a flat layer that separates Γ1

n from Γ2
n in Ωn have

abnormally small capacity, then φn will be abnormally small. Since the cardinality
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of such a set of edges is D′nd−1 for a constant D′, the probability of this event is
of order exp−Dnd−1 for a constant D.

The second remark we would like to make is that the condition d(Γ1,Γ2) > 0
is relevant in Theorem 10. First, without this condition, we cannot be sure that

there exists a polyhedral set P as in the definition of φ̃Ω, and thus the polyhedral
approximation (see section 4) cannot be performed. Moreover, if d(Γ1,Γ2) = 0,
there exists a set of edges of constant cardinality (not depending on n) that contains
paths from Γ1

n to Γ2
n through Ωn for all n along the common boundary of Γ1 and

Γ2, and so it may be sufficient for these edges to have a huge capacity to obtain
the fact that φn is abnormally large, too. Thus, we cannot hope to obtain upper
large deviations of volume order (see [26] for a counterexample). However, we do
not know if this condition is essential for Theorem 1 to hold.

3.2.1. Lower large deviations. To prove Theorem 9, we have to study the probability

(1) P
[
φn ≤ (φΩ − ε)nd−1

]

for a positive ε. The proof is divided into three steps.

First step: We consider a set of edges En that cuts Γ1
n from Γ2

n in Ωn, of
minimal capacity (so φn = V (En)) and having the minimal number of edges among
those cutsets. We see it as the (edge) boundary of a set En which is included in Ω.
Zhang’s estimate of the number of edges in a minimal cutset (Theorem 1 in [28])
states that with high probability, the perimeter P(En,Ω) of En in Ω is smaller than
a constant β. Thus, En belongs to the set

Cβ = {F ⊂ Ω |F ⊂ Ω , P(F,Ω) ≤ β} .
We endow Cβ with the topology L1 associated to the following distance d:

d(F1, F2) = Ld(F1�F2) ,

where Ld is the d-dimensional Lebesgue measure. For this topology, the set Cβ is
compact. Thus, if we associate to each set F in Cβ a positive constant εF , and if we
denote by V(F, εF ) the neighbourhood of F of radius εF for the distance d defined
above, the collection of these neighbourhoods is an open covering of Cβ, and thus
by compactness of Cβ we can extract a finite covering:

∃F1, ..., FN Cβ ⊂
N⋃

i=1

V(Fi, εFi
) .

If we find an upper bound on the probability

(2) P
[
φn ≤ (φΩ − ε)nd−1 and d(En, F ) ≤ εF

]

for each F in Cβ and a corresponding εF , then we will obtain an upper bound on
the probability (1).

Second step: We consider a fixed set F in Cβ , and we want to evaluate the
probability (2). So we suppose that En is close to F for the distance d, and we
denote it by En ≈ F to simplify the notation. Here we skip all the problems of
boundary conditions that arise in the proof of Theorem 9: we suppose that IΩ(F )
is equal to the integral of ν along ∂∗F ∩ Ω.

We make a zoom along ∂F . Using the Vitali covering theorem (Theorem 12 in
section 4), we know that there exists a finite number of disjoint balls Bj = B(xj , rj)



3678 RAPHAËL CERF AND MARIE THÉRET

for j = 1, ...,N with xj ∈ ∂F such that ∂F is “almost flat” in each ball, and the
part of ∂F that is missing in the covering has a very small area. We denote by vj
the exterior normal unit vector of F at xj (we suppose that it exists). Here “almost
flat” means that

(i) the capacity of ∂F inside Bj is very close to the capacity of the flat disc

hyp(xj , vj) ∩Bj , i.e., very close to αd−1r
d−1
j ν(vj) ;

(ii) F ∩Bj ≈ B−
j , where B−

j is the lower half part of the ball Bj in the direction
given by vj :

B−
j = {y ∈ Bj | (y − xj) · vj < 0} .

Thanks to property (i) and the fact that only a very small area of ∂F is missing in
the covering, we know that

(3) IΩ(F ) is close to
N∑

j=1

αd−1r
d−1
j ν(vj) .

On the other hand, thanks to property (ii), we obtain that

En ∩Bj ≈ F ∩Bj ≈ B−
j

for the distance d. It means that in volume, En is very similar to B−
j inside

Bj . However, there might exist some thin but long strands in Bj that belong to
En∩ (B−

j )c or to Ec
n∩B−

j . We want to compare V (En∩Bj) with the maximal flow

τn(Dj , γ) in a cylinder of basis Dj = disc(xj , r
′
j , vj), where r′j is a little bit smaller

than rj and γ is a very small height, so that the cylinder is included in Bj and is
almost flat. To make this comparison, we have to cut the above-mentioned strands
by adding edges to En. We do it very carefully, in order to control the number of
edges we add, together with their capacity, and we obtain that

(4) V (En ∩Bj) ≤ τn(Dj , γ) + error ,

where error is a corrective term that is very small. Combining (3) and (4), since
IΩ(F ) ≥ φΩ, we conclude that if φn ≤ (φΩ − ε)nd−1 and En ≈ F , then there exists
j ∈ {1, ...,N} such that

τn(Dj , γ) ≤ (ν(vj)− ε/2)αd−1r
′d−1
j nd−1 .

Third step: There remains to study the probability

P[τn(Dj , γ) ≤ (ν(vj)− ε/2)αd−1r
′d1
j nd−1] .

In fact, it has already been done by Rossignol and Théret in [25]. It is easy to
compare τn(Dj , γ) with a sum of maximal flows through cylinders whose bases are
hyperrectangles. Then, we can directly use Theorem 3.9 in [25] that states that
the lower large deviations of these maximal flows below their limits are of surface
order.

3.2.2. Upper large deviations. To prove Theorem 10, we have to study the proba-
bility

(5) P

î
φn ≥ (φ̃Ω + ε)nd−1

ó

for a positive ε. First of all, we can check that φ̃Ω is finite. In fact, we have to

construct a polyhedral set P that satisfies all the conditions in the definition of φ̃Ω.
This is done with the help of techniques very similar to some of those we will use
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in section 4 to complete our polyhedral approximation, so we will not explain these
techniques here. The proof of Theorem 10 is divided into three steps.

First step: We consider a polyhedral set P as in the definition of φ̃Ω such that
IΩ(P ) is very close to this constant. We want to construct sets of edges near ∂P ∩Ω
that cut Γ1

n from Γ2
n in Ωn. Because we took a discrete approximation of Ω from

the outside, we need to enlarge Ω a little, because some flow might go from Γ1
n

to Γ2
n using paths that lie partly in Ωn � Ω. Thus we construct a set Ω′ which

contains a small neighbourhood of Ω (hence also Ωn for all n large enough), which
is transverse to ∂P , and which is small enough to ensure that IΩ′(P ) is still very
close to φΩ. To construct this set, we cover ∂Ω with small cubes, by compactness
we extract a finite subcover of ∂Ω, and finally we add the cubes of the subcover to
Ω to obtain Ω′. We construct these cubes so that their boundaries are transverse
to ∂P , and their diameters are uniformly smaller than a small constant, so that Ω′

is included in a neighbourhood of Ω as small as we need. Since ∂P is transverse to
Γ, if we take this constant small enough, we can control Hd−1(∂P ∩ (Ω′

�Ω)), and
thus the difference between IΩ′(P ) and IΩ(P ).

Then we construct a family of Cn (where C > 0) disjoint sets of edges that cut
Γ1
n from Γ2

n in Ωn and that lie near ∂P . We consider the neighbourhood P ′ of P
inside Ω′ at a distance smaller than a tiny constant h, and we partition P ′

� P
into slabs M′(k) of width of order 1/n, so we have Cn such slabs which look like
translates of ∂P ∩Ω′ that are slightly deformed and thickened. We prove that each
path from Γ1

n to Γ2
n in Ωn must contain at least one edge that lies in the set M′(k)

for each k, i.e., each set M′(k) contains a cutset. Thus we have found a family of
Cn disjoint cutsets.

Second step: We almost cover ∂P ∩ Ω′ by a finite family of disjoint cylinders
Bj , j ∈ J , whose bases are hyperrectangles of sidelength l, that are orthogonal to
∂P , of height larger than h, and such that the part of ∂P which is missing in this
covering is very small. Thus, we obtain that

(6) IΩ′(P ) is close to
∑

j∈J

ν(vj)l
d−1 ,

where vj gives the direction towards which the cylinder Bj is tilted (it is the unit
vector which is orthogonal to the face of ∂P that cuts Bj).

We want to compare φn with the sum of the maximal flows φ(Bj , vj). For each
j, let Ej be a set of edges that cuts the top from the bottom of Bj . The set

⋃
j∈J Ej

does not cut Γ1
n from Γ2

n in Ωn in general. To create such a cutset we must add
two sets of edges:

(i) a set of edges that covers the part of ∂P ∩Ω′ that is missing in the covering
by the cylinders Bj ,

(ii) a set of edges that glues together all the previous sets of edges (the sets Ej

and the set described in (i)).

In fact, we have already constructed Cn possible sets of edges as in (i): the edges
that lie in M′(k)� (

⋃
j∈J Bj) for k = 1, ..., Cn. We denote these sets by M(k). We

can also find C ′n (C ′ > 0) disjoint sets of edges that can be the glue described in
(ii); we denote these sets by W (l) for l = 1, ..., C ′n. We do not provide a precise
description of these sets. In fact, we can choose different sets because we provide
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the glue more or less in the interior of the cylinders Bj . Thus we obtain that

∀k∈{1, ..., Cn} ∀l∈{1, ..., C ′n}
⋃

j∈J

Ej∪M(k) ∪W (l) cuts Γ1
n from Γ2

n in Ωn.

We obtain that

(7) φn ≤
∑

j∈J

φ(Bj , vj) + min
k=1,...,Cn

V (M(k)) + min
l=1,...,C′n

V (W (l)) .

Combining (6) and (7), we see that if φn ≥ (φ̃Ω+ε)nd−1, one of the following events
must happen:

(a) ∃j ∈ J φ(Bj , vj) ≥ (ν(vj) + ε/2)ld−1nd−1,
(b) ∀k ∈ {1, ..., Cn} V (M(k)) ≥ ηnd−1,
(c) ∀l ∈ {1, ..., C ′n} V (W (l)) ≥ ηnd−1,

where η is a very small constant (depending on ε and φΩ).

Third step: It consists in taking care of the probability that the events (a), (b)
or (c) happen. The probability of (a) has already been studied in [26]: the upper
large deviations of the variable φ in a cylinder above ν are of volume order. The
events (b) and (c) are of the same type, and their probability is of the form

(8) P

⎡

⎣
αnd−1
∑

m=1

tm ≥ ηnd−1

⎤

⎦

Dn

,

where (tm)m∈N is a family of i.i.d. variables of distribution function Λ, D is a
constant, η is a very small constant and αnd−1 is the cardinality of the family of
variables we consider. If α < ηE[t1]

−1 and if the law Λ admits one exponential
moment, the Cramér Theorem in R states that the probability (8) decays exponen-
tially fast with nd. Note the role of the optimization over Dn different probabilities
to obtain the correct speed of decay. To complete the proof, it is enough to control
the cardinality of the sets M(k) and W (l) for each k, l. This can be done by using
the geometrical properties of ∂P (it is polyhedral and transverse to ∂Ω′).

4. Polyhedral approximation: φΩ = φ̃Ω

We consider an open bounded domain Ω in R
d. We denote its topological bound-

ary by Γ = ∂Ω. Also let Γ1, Γ2 be two disjoint subsets of Γ.

Hypothesis on Ω. We suppose that Ω is a Lipschitz domain, i.e., its boundary
Γ can be locally represented as the graph of a Lipschitz function defined on some
open ball of Rd−1. Moreover, there exists a finite number of oriented hypersurfaces
S1, . . . , Sp of class C1 which are transverse to each other and such that Γ is included
in their union S1 ∪ · · · ∪ Sp.

This hypothesis is automatically satisfied when Ω is a bounded open set with
a C1 boundary or when Ω is a polyhedral domain. The Lipschitz condition can
be expressed as follows: each point x of Γ = ∂Ω has a neighbourhood U such
that U ∩Ω is represented by the inequality xn < f(x1, . . . , xn−1) in some cartesian
coordinate system where f is a function satisfying a Lipschitz condition. Such
domains are usually called Lipschitz domains in the literature. The boundary Γ
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of a Lipschitz domain is d − 1 rectifiable (in the terminology of Federer’s book
[14]) so that its Minkowski content is equal to Hd−1(Γ). In addition, a Lipschitz
domain Ω is admissible (in the terminology of Ziemer’s book [29]), and in particular
Hd−1(Γ � ∂∗Ω) = 0. Moreover, each point of Γ is accessible from Ω through a
rectifiable arc.

Hypothesis on Γ1,Γ2. The sets Γ1, Γ2 are open subsets of Γ. The relative bound-
aries ∂Γ Γ1, ∂Γ Γ2 of Γ1, Γ2 in Γ have null Hd−1 measure. The distance between
Γ1 and Γ2 is positive.

We recall that the relative topology of Γ is the topology induced on Γ by the
topology of Rd. Hence each of the sets Γ1,Γ2 is the intersection of Γ with an open
set of Rd. For F a subset of Ω having finite perimeter in Ω, the capacity of F is

IΩ(F ) =

∫

Ω∩∂∗F

ν(vF (y)) dHd−1(y)

+

∫

Γ2∩∂∗F

ν(vF (y)) dHd−1(y) +

∫

Γ1∩∂∗(Ω�F )

ν(vΩ�F (y)) dHd−1(y).

For all A ⊂ R
d, A is the closure of A,

◦
A its interior and Ac = R

d
�A. We will prove

the following theorem:

Theorem 11. Let F be a subset of Ω having finite perimeter. For any ε > 0, there
exists a polyhedral set P whose boundary ∂P is transverse to Γ and such that

Γ1 ⊂
◦
P , Γ2 ⊂

◦�̊
Rd � P , Ld(FΔ(P ∩ Ω)) < ε ,

∫

∂∗P∩Ω

ν(vP (x))dHd−1(x) = IΩ(P ) ≤ IΩ(F ) + ε .

First we notice that Theorem 11 implies that φΩ = φ̃Ω, and thus the convergence

of φn (see section 3.2). It is obvious since φΩ ≤ φ̃Ω (see section 2.5), and Theorem

11 implies that φΩ ≥ φ̃Ω.
The main difficulty of the proof of Theorem 11 is in properly handling the approx-

imation close to Γ in order to push all the interfaces back inside Ω. The essential
tools of the proof are the Besicovitch differentiation theorem, the Vitali covering
theorem and an approximation technique due to De Giorgi. Let us summarise the
global strategy.

Sketch of the proof. We fix γ > 0. We cover ∂∗Ω up to a set of Hd−1 measure
less than γ by a finite collection of disjoint balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4,
centered on Γ, whose radii are sufficiently small to ensure that the surface and
volume estimates within the balls are controlled by the factor γ. The indices of I1
correspond to balls centered on Γ1 ∩ ∂∗(Ω� F ), the indices of I2 to balls centered
on Γ2 ∩ ∂∗F , the indices of I3 to balls centered on (Γ� Γ2) ∩ ∂∗F , and the indices
of I4 to balls centered on (Γ� Γ1)∩ ∂∗(Ω� F ) (see Figure 5). The remaining part
of Γ is covered by a finite collection of balls B(yj , sj), j ∈ J0 ∪ J1 ∪ J2. The indices

of J1 correspond to balls covering the remaining part of Γ1, and the indices of J2
correspond to balls covering the remaining part of Γ2. We choose ε > 0 sufficiently
small, depending on γ and on the previous families of balls, and we approximate
the set F by a smooth set L inside Ω, whose capacity and volume are at a distance
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Balls
indexed

by I1

possible strands
in ∂L
for d ≥ 3

Balls indexed by I4

F ∂L

Balls indexed 
by I5

Balls indexed by I4Balls indexed by I3

Balls 
  indexed by 
     I2

Γ2

Ω � F

Ω � F

Ω

Γ1

∂F

Figure 5. The balls indexed by Ii for i = 1, ..., 5.

less than ε from those of F . We then build two further family of balls:

- B(xi, ri), i ∈ I5, cover Ω ∩ ∂L, up to a set of Hd−1 measure ε.
- B(yj , sj), j ∈ J3, cover the remaining set Ω ∩ ∂L�

⋃
i∈I5 B(xi, ri).

Inside each ball B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5, up to a small fraction, the
interfaces are located on hypersurfaces and the radii of the balls are so small that
these hypersurfaces are almost flat. Hence we can enclose the interfaces into small
flat polyhedral cylinders Di, i ∈ I1∪I2∪I3∪I4∪I5, and by aggregating adequately
the cylinders to the set F or to its complement Ω � F , we move these interfaces
on the boundaries of these cylinders. The remaining interfaces are enclosed in the
balls B(yj , sj), j ∈ J0 ∪ J1 ∪ J2 ∪ J3, and we approximate these balls from the
outside by polyhedra.

We have to delicately define the whole process, in order not to lose too much
capacity and to control the possible interaction between interfaces close to Γ and in-
terfaces in Ω. The presence of boundary conditions creates a substantial additional
difficulty compared to the polyhedral approximation performed in [9]. Indeed, the
most difficult interfaces to handle are those corresponding to Di, i ∈ I3 ∪ I4. We
first choose the balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, corresponding to γ. We cover
the remaining portion of Γ with the balls B(yj , sj), j ∈ J0 ∪ J1 ∪ J2. At this point
we can already in principle define the cylinders Di, i ∈ I1 ∪ I2. Then we choose ε
small enough, depending on γ and the balls B(xi, ri), i ∈ I1∪ I2∪ I3∪ I4, to ensure
that the perturbation of volume ε caused when smoothing the set F inside Ω will
not significantly alter the situation inside the balls B(xi, ri), i ∈ I3 ∪ I4. Then
we move inside Ω and we build the cylinders Di, i ∈ I5. Then we come back to
the boundary and we build the cylinders Di, i ∈ I3 ∪ I4. We cover the remaining
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interfaces in Ω by the balls B(yj , sj), j ∈ J3. Finally we aggregate successively
each flat polyhedral cylinder Di to the set L or to its complement. �

Preparation of the proof. Let us consider a subset F of Ω having finite perimeter.
Let γ belong to ]0, 1/16[. We start by handling the boundary Γ, for which we
make locally flat approximations controlled by the factor γ. By hypothesis, there
exists a finite number of oriented hypersurfaces S1, . . . , Sp of class C1 such that Γ
is included in their union S1 ∪ · · · ∪ Sp. In particular, we have

Γ� ∂∗Ω ⊂ S =
⋃

1≤k<l≤p

Sk ∩ Sl .

Since the hypersurfaces S1, . . . , Sr are transverse to each other, this implies that
Hd−1(S) = 0.

• Continuity of the normal vectors. The hypersurfaces S1, . . . , Sp being C1

and the set Γ compact, the maps x ∈ Γ �→ vSk
(x), 1 ≤ k ≤ p (where vSk

(x) is the
unit normal vector to Sk at x) are uniformly continuous:

∀δ > 0 ∃η>0 ∀k∈{1, . . . , p} ∀x, y∈Sk∩Γ |x−y|2≤η ⇒
∣
∣vSk

(x)−vSk
(y)
∣
∣
2
<δ.

Let η∗ be associated to δ = 1 by this property. We will also use a more refined
property.

• Localisation of the interfaces. We first prove a geometric lemma:

Lemma 1. Let Γ be a hypersurface (that is, a C1 submanifold of Rd of codimen-
sion 1) and let K be a compact subset of Γ. There exists a positive M = M(Γ,K)
such that

∀ε > 0 ∃ r > 0 ∀x, y ∈ K |x− y|2 ≤ r ⇒ d2(y, tan(Γ, x)) ≤ M ε |x− y|2
(tan(Γ, x) is the tangent hyperplane of Γ at x).

Proof. By a standard compactness argument, it is enough to prove the following
local property:

∀x ∈ Γ ∃M(x) > 0 ∀ε > 0 ∃ r(x, ε) > 0 ∀y, z ∈ Γ ∩B(x, r(x, ε)),

d2(y, tan(Γ, z)) ≤ M(x) ε |y − z|2 .
Indeed, if this property holds, we cover K by the open balls B

o
(x, r(x, ε)/2), x ∈ K,

we extract a finite subcover B
o
(xi, r(xi, ε)/2), 1 ≤ i ≤ k, and we set

M = max{M(xi) : 1 ≤ i ≤ k } , r = min{ r(xi, ε)/2 : 1 ≤ i ≤ k } .
Now let y, z belong to K with |y − z|2 ≤ r. Let i be such that y belongs to
B(xi, r(xi, ε)/2). Since r ≤ r(xi, ε)/2, both y, z belong to the ball B(xi, r(xi, ε))
and it follows that

d2(y, tan(Γ, z)) ≤ M(xi) ε |y − z|2 ≤ M ε |y − z|2.
We now turn to the proof of the above local property. Since Γ is a hypersurface,

for any x in Γ there exists a neighbourhood V of x in R
d, a diffeomorphism f : V �→

R
d of class C1 and a (d−1)-dimensional vector space Z of Rd such that Z∩f(V ) =

f(Γ ∩ V ) (see for instance [14], 3.1.19). Let A be a compact neighbourhood of x
included in V . Since f is a diffeomorphism, the maps y ∈ A �→ df(y) ∈ End(Rd)
and u ∈ f(A) �→ df−1(u) ∈ End(Rd) are continuous. Therefore they are bounded:

∃M > 0 ∀y ∈ A ||df(y)|| ≤ M , ∀u ∈ f(A) ||df−1(u)|| ≤ M
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(here ||df(x)|| = sup{ |df(x)(y)|2 : |y|2 ≤ 1 } is the standard operator norm in
End(Rd)). Since f(A) is compact, the differential map df−1 is uniformly continuous
on f(A):

∀ε > 0 ∃δ > 0 ∀u, v ∈ f(A) |u− v|2 ≤ δ ⇒ ||df−1(u)− df−1(v)|| ≤ ε .

Let ε be positive and let δ be associated to ε as above. Let ρ be positive and small
enough so that ρ < δ/2 and B(f(x), ρ) ⊂ f(A) (since f is a C1 diffeomorphism,
f(A) is a neighbourhood of f(x)). Let r be such that 0 < r < ρ/M and B(x, r) ⊂ A.
We claim that M associated to x and r associated to ε, x answer the problem.
Let y, z belong to Γ ∩B(x, r). Since [y, z] ⊂ B(x, r) ⊂ A, and ||df(ζ)|| ≤ M on A,

|f(y)− f(x)|2 ≤ M |y − x|2 ≤ Mr < ρ , |f(z)− f(x)|2 < ρ ,

|f(y)− f(z)|2 < δ , |f(y)− f(z)|2 < M |y − z|2 .

We next apply a classical lemma of differential calculus (see [20], I, 4, Corollary 2)
to the map f−1, the interval [f(z), f(y)] (which is included in B(f(x), ρ) ⊂ f(A))
and the point f(z):

|y − z − df−1(f(z))(f(y)− f(z))|2
≤ |f(y)− f(z)|2 sup { ||df−1(ζ)− df−1(f(z))|| : ζ ∈ [f(z), f(y)] } .

The right–hand member is less than M |y− z|2 ε. Since z+df−1(f(z))(f(y)− f(z))
belongs to tan(Γ, z), we are done. �

We come back to our case. Let k ∈ { 1, . . . , p }. The set Sk ∩ Γ is a compact
subset of the hypersurface Sk. Applying Lemma 1, we get

∃Mk ∀δ0>0 ∃ ηk>0 ∀x, y∈Sk∩Γ |x−y|2≤ηk ⇒ d2
(
y, tan(Sk, x)

)
≤Mkδ0|x−y|2 .

Let M0 = max1≤k≤p Mk and let δ0 in ]0, 1/2[ be such that M0δ0 < γ. For each k
in { 1, . . . , p }, let ηk be associated to δ0 as in the above property and let

η0 = min
(

min
1≤k≤p

ηk, η
∗,

1

8d
dist(Γ1,Γ2)

)
.

• Covering of Γ by transverse cubes. We build a family of cubes Q(x, r),
indexed by x ∈ Γ and r ∈]0, rΓ[ such that Q(x, r) is a cube centered at x of side
length r which is transverse to Γ. For x ∈ R

d and k ∈ { 1, . . . , p }, let pk(x) be a
point of Sk ∩ Γ such that

|x− pk(x)|2 = inf
{
|x− y|2 : y ∈ Sk ∩ Γ

}
.

Such a point exists since Sk ∩ Γ is compact. We then define for k ∈ { 1, . . . , p }

∀x ∈ R
d vk(x) = vSk

(pk(x)) .

We also define

dr = inf
v1,...,vp∈Sd−1

max
b∈Bd

min
1≤k≤r
e∈b

(
|e− vi|2, | − e− vi|2

)
,

where Bd is the collection of the orthonormal basis of Rd and Sd−1 is the unit sphere
of Rd. Let η be associated to dr/4 as in the above continuity property. We set

rΓ =
η

2d
.
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Let x ∈ Γ. By the definition of dr, there exists an orthonormal basis bx of Rd such
that

∀e ∈ bx ∀k ∈ { 1, . . . , p } min
(
|e− vk(x)|2, | − e− vk(x)|2

)
>

dr
2

.

Let Q(x, r) be the cube centered at x of sidelength r whose sides are parallel to
the vectors of bx. We claim that Q(x, r) is transverse to Γ for r < rΓ. Indeed, let
y ∈ Q(x, r)∩Γ. Suppose that y ∈ Sk for some k ∈ { 1, . . . , p }, so that vk(y) = vSk

(y)
and |x − pk(x)|2 < drΓ. In particular, we have |y − pk(x)|2 < 2drΓ < η and
|vSk

(y)− vk(x)|2 < dr/4. For e ∈ bx,

dr
2

≤ |e− vk(x)|2 ≤ |e− vSk
(y)|2 + |vSk

(y)− vk(x)|2,

whence

|e− vSk
(y)|2 ≥ dr

2
− dr

4
=

dr
4

.

This is also true for −e, therefore the faces of the cube Q(x, r) are transverse to Sk.
• Vitali covering theorem for Hd−1. A collection of sets U is called a Vitali

class for a Borel set E of Rd if for each x ∈ E and δ > 0 there exists a set U ∈ U
containing x such that 0 < diamU < δ, where diamU is the diameter of the set U .
We now recall the Vitali covering theorem for Hd−1 (see for instance [13], Theorem
1.10), since it will be useful during the proof:

Theorem 12. Let E be an Hd−1 measurable subset of Rd and U be a Vitali class
of closed sets for E. Then we may select a (countable) disjoint sequence (Ui)i∈I

from U such that

either
∑

i∈I

(diamUi)
d−1 = +∞ or Hd−1(E �

⋃

i∈I

Ui) = 0 .

If Hd−1(E) < ∞, then given ε > 0, we may also require that

Hd−1(E) ≤ αd−1

2d−1

∑

i∈I

(diamUi)
d−1 .

Start of the main argument. We first handle the interfaces along Γ. Let R(Γ) be
the set of the points x of Γ� S such that

lim
r→0

(αdr
d)−1Ld(B(x, r)� Ω) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ Γ) = 1 .

Let R(Ω� F ) be the set of the points x belonging to ∂∗(Ω� F ) ∩R(Γ) such that

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂∗(Ω� F )) = 1 ,

lim
r→0

(αdr
d)−1Ld(B(x, r) ∩ (Ω� F )) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂∗(Ω�F )

ν(vΩ�F (y)) dHd−1(y) = ν(vΩ(x)) .
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Let R(F ) be the set of the points x belonging to ∂∗F ∩R(Γ) such that

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂∗F ) = 1 ,

lim
r→0

(αdr
d)−1Ld(B(x, r) ∩ F ) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂∗F

ν(vF (y)) dHd−1(y) = ν(vΩ(x)) .

Thanks to the hypothesis on Γ and the structure of the sets of finite perimeter (see
either Lemma 1, section 5.8 of [12], Lemma 5.9.5 in [29] or Theorem 3.61 of [1]),
we have

Hd−1
(
Γ� (R(F ) ∪R(Ω� F ))

)
= 0 .

For x in R(Γ), there exists a positive r0(x, γ) such that, for any r < r0(x, γ),

|Ld(B(x, r)� Ω)− αdr
d/2| ≤ γ αdr

d ,

|Hd−1(B(x, r) ∩ Γ)− αd−1r
d−1| ≤ γ αd−1r

d−1 .

For x in R(Ω � F ), there exists a positive r(x, γ) < r0(x, γ) such that, for any
r < r(x, γ),

|Hd−1(B(x, r) ∩ ∂∗(Ω� F ))− αd−1r
d−1| ≤ γ αd−1r

d−1 ,

|Ld(B(x, r) ∩ (Ω� F ))− αdr
d/2| ≤ γ αdr

d ,
∣
∣
∣(αd−1r

d−1)−1

∫

B(x,r)∩∂∗(Ω�F )

ν(vΩ�F (y)) dHd−1(y)− ν(vΩ(x))
∣
∣
∣ ≤ γ .

For x in R(F ), there exists a positive r(x, γ) < r0(x, γ) such that, for any r <
r(x, γ),

|Hd−1(B(x, r) ∩ ∂∗F )− αd−1r
d−1| ≤ γ αd−1r

d−1 ,

|Ld(B(x, r) ∩ F )− αdr
d/2| ≤ γ αdr

d ,
∣
∣
∣(αd−1r

d−1)−1

∫

B(x,r)∩∂∗F

ν(vF (y)) dHd−1(y)− ν(vΩ(x))
∣
∣
∣ ≤ γ .

Let us define the sets

Γ1∗ = Γ1 ∩R(Ω� F ) , Γ2∗ = Γ2 ∩R(F ) ,

Γ3∗ = (Γ� Γ2) ∩R(F ) , Γ4∗ = (Γ� Γ1) ∩R(Ω� F ) .

The family of balls

B(x, r) , x ∈ Γ1∗ ∪ Γ2∗ , r < min
(
r(x, γ), γ, η0,

1

2
dist(x, S)

)
,

B(x, r) , x ∈ Γ3∗ , r < min
(
r(x, γ), γ, η0,

1

2
dist(x, S),

1

2
dist(x,Γ2)

)
,

B(x, r) , x ∈ Γ4∗ , r < min
(
r(x, γ), γ, η0,

1

2
dist(x, S),

1

2
dist(x,Γ1)

)

is a Vitali relation for Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗. Recall that S is the set of points
belonging to two or more of the hypersurfaces S1, . . . , Sp, and since S is disjoint
from Γ1∗,Γ2∗,Γ3∗,Γ4∗, then dist(x, S) > 0 for x ∈ Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗. By
the standard Vitali covering theorem (see Theorem 12), we may select a finite
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or countable collection of disjoint balls B(xi, ri), i ∈ I, such that: for i ∈ I,
xi ∈ Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗, ri < min(r(xi, γ), γ, η0,

1
2dist(xi, S)) and

either Hd−1
(
Γ�

⋃

i∈I

B(xi, ri)
)

= 0 or
∑

i∈I

rd−1
i = ∞ .

Because for each i in I, ri is smaller than r(xi, γ),

αd−1(1− γ)
∑

i∈I

rd−1
i ≤ Hd−1(Γ) < ∞,

and therefore the first case occurs, so that we may select four finite subsets I1, I2, I3,
I4 of I such that

∀k ∈ { 1, . . . , 4 } ∀i ∈ Ik xi ∈ Γk∗ ,

Hd−1
(
Γ�

⋃

1≤k≤4

⋃

i∈Ik

B(xi, ri)
)

< γ .

Let i belong to I1 ∪ I2 ∪ I3 ∪ I4. We have

Hd−1(Γ ∩B(xi, ri)�B(xi, ri(1− 2
√
γ)))

= Hd−1(Γ ∩B(xi, ri))−Hd−1(Γ ∩B(xi, ri(1−2
√
γ)))

≤ (1+γ)αd−1r
d−1
i −(1−γ)αd−1r

d−1
i (1− 2

√
γ)d−1

= αd−1r
d−1
i (1 + γ − (1− γ)(1− 2

√
γ)d−1)

≤ αd−1r
d−1
i 2d

√
γ.

Hence
∑

i∈I1∪I2∪I3∪I4

Hd−1(Γ ∩B(xi, ri)�B(xi, ri(1− 2
√
γ)))

≤ 2d
√
γ

∑

i∈I1∪I2∪I3∪I4

αd−1r
d−1
i ≤ 4d

√
γHd−1(Γ)

and

Hd−1
(
Γ�

⋃

i∈I1∪I2∪I3∪I4

B(xi, ri(1− 2
√
γ))
)

< γ + 4d
√
γHd−1(Γ) .

We have a finite number of disjoint closed balls B(xi, ri(1−2
√
γ)), i ∈ I1∪I2∪I3∪I4.

By slightly increasing all the radii ri, we can keep the balls disjoint, ensure that
each radius ri satisfies the same strict inequalities for i in I1 ∪ I2 ∪ I3 ∪ I4, and get
the inequality

Hd−1
(
Γ�

⋃

i∈I1∪I2∪I3∪I4

B
o

(xi, ri(1− 2
√
γ))
)

< 2γ + 4d
√
γHd−1(Γ) .

The above set is a compact subset of Γ. For k = 1, 2, we define

Rk = Γk �

⋃

i∈I1∪I2∪I3∪I4

B
o

(xi, ri(1− 2
√
γ)) .

The sets R1 and R2 are compact, and their Hd−1 measure is less than 2γ +
4d

√
γHd−1(Γ) (recall that ∂ΓΓ

1 and ∂ΓΓ
2 have a null Hd−1 measure). For k = 1, 2,
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by the definition of the Hausdorff measure Hd−1, there exists a collection of balls
B(yj , sj), j ∈ Jk, such that

∀j ∈ Jk 0 < sj < min
(
η0,

rΓ
2

)
, B(yj , sj) ∩Rk �= ∅ ,

∑

j∈Jk

αd−1s
d−1
j < 3γ + 4d

√
γHd−1(Γ) ,

Rk ⊂
⋃

j∈Jk

B
o

(yj , sj) .

By compactness of R1 and R2, the sets J1 and J2 can be chosen to be finite. It
remains to cover

R0 = Γ�

⋃

i∈I1∪I2∪I3∪I4

B
o

(xi, ri(1− 2
√
γ))�

⋃

j∈J1∪J2

B
o

(yj , sj) .

The set R0 is a closed subset of Γ which is at a positive distance from Γ1 and Γ2.
There exists a collection of balls B(yj , sj), j ∈ J0, such that

∀j ∈ J0 0 < sj < min
(
η0,

rΓ
2
,
1

8d
dist(R0,Γ

1 ∪ Γ2)
)
, B(yj , sj) ∩R0 �= ∅ ,

∑

j∈J0

αd−1s
d−1
j < 3γ + 4d

√
γHd−1(Γ) ,

R0 ⊂
⋃

j∈J0

B
o

(yj , sj) .

Now the collection of balls

B
o

(xi, ri(1− 2
√
γ)), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, B(yj , sj), j ∈ J0 ∪ J1 ∪ J2

completely covers Γ. We will next replace these balls by polyhedra. For j ∈
J0 ∪ J1 ∪ J2, let xj belong to B(yj , sj) ∩ Γ and let Qj be the cube Q(xj , 4sj).
For i in I1 ∪ I2 ∪ I3 ∪ I4, the point xi belongs to exactly one hypersurface among
S1, . . . , Sp, which we denote by Ss(i). In particular Γ admits a normal vector vΩ(xi)
at xi in the classical sense. For each i in I1 ∪ I2 ∪ I3 ∪ I4, let Pi be a convex open
polygon inside the hyperplane hyp(xi, vΩ(xi)) such that

disc(xi, ri(1− 2
√
γ), vΩ(xi)) ⊂ Pi ⊂ disc(xi, ri(1−

√
γ), vΩ(xi)) ,

|Hd−2(∂Pi)− αd−2r
d−2
i (1−√

γ)d−2| ≤ δ0αd−2r
d−2
i (1−√

γ)d−2 ,

|Hd−1(Pi)− αd−1r
d−1
i (1−√

γ)d−1| ≤ δ0αd−1r
d−1
i (1−√

γ)d−1 .

Thanks to the choices of the radius ri and the constants M0, η0, we then have

Γ ∩B(xi, ri(1− 2
√
γ)) ⊂ Ss(i) ∩B(xi, ri(1− 2

√
γ)) ⊂ cyl

o

(Pi, 2γri) ,

Γ ∩B(xi, ri) ⊂ Ss(i) ∩B(xi, ri) ⊂ cyl(disc(xi, ri, vΩ(xi)),M0δ0ri) ,

∀x ∈ B(xi, ri) ∩ Γ |vΩ(x)− vΩ(xi)|2 < 1 .

The choice of δ0 guarantees that M0δ0(1 + δ0)ri < 2γri. Let t be such that

M0δ0(1 + δ0)ri ≤ t <
√
γri .

We have

−tvΩ(xi) + Pi ⊂ Ω ∩B(xi, ri) , Γ ∩ (−tvΩ(xi) + Pi) = ∅ .
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In particular, the set Γ can intersect the cylinder cyl(Pi, t) only along its lateral
sides, which are parallel to vΩ(xi). Let x belong to Γ ∩ ∂ cyl(Pi, t). Then

|vcyl(Pi,t)(x)− vΩ(x)|2 ≥ |vcyl(Pi,t)(x)− vΩ(xi)|2 − |vΩ(xi)− vΩ(x)|2 ≥
√
2− 1 .

Therefore the cylinder cyl(Pi, t) is transverse to Γ. We will replace the ball
B
o
(xi, ri(1 − 2

√
γ)) by the cylinder cyl(Pi, ti), for a carefully chosen value of ti

in the interval [M0δ0(1 + δ0)ri,
√
γri[. However, we must delay the choices of the

values ti, i ∈ I3 ∪ I4, until we have modified the set F inside Ω. We next deal with
the interfaces inside Ω, and we make an approximation of F controlled by a factor
ε. We choose ε sufficiently small compared to γ so that, when we perturb the set
F by a volume ε, the resulting effect close to Γ is still of order γ. Let ε be such
that 0 < ε < γ and

ε < γαd min
i∈I1∪I2∪I3∪I4

rdi .

We next use a classical approximation result: there exists a relatively closed subset
L of Ω having finite perimeter such that Ω ∩ ∂L is a hypersurface of class C∞ and

Ld(FΔL) < ε ,
∣
∣
∣

∫

Ω∩∂∗F

ν(vF (y)) dHd−1(y)−
∫

Ω∩∂L

ν(vL(y)) dHd−1(y)
∣
∣
∣ < ε .

In the case where ν is constant, this result is stated in Lemma 4.4 of [23]. In the
non-constant case, the argument should be slightly modified, as explained in the
proof of proposition 14.8 of [9], where the approximation is performed in R

d instead
of in Ω. When working inside Ω, the extra difficulty is in dealing with regions close
to the boundary (see the proof of Proposition 4.3 of [23]). For r > 0, we define

∂Lr =
{
x ∈ ∂L : d(x,Γ) ≥ r

}
.

By continuity of the measure Hd−1|∂L, there exists r∗ > 0 such that

Hd−1(Ω ∩ ∂L� ∂L2r∗) ≤ ε .

We apply Lemma 1 to the set ∂Lr∗ and the hypersurface Ω ∩ ∂L:

∃M > 0 ∀δ > 0 ∃ η > 0 ∀x, y ∈ ∂Lr∗ ,

|x− y|2 ≤ η ⇒ d2
(
y, tan(∂L, x)

)
≤ Mδ|x− y|2 .

For a point x belonging to ∂Lr∗ , the tangent hyperplane of Ω∩ ∂L at x is precisely
hyp(x, vL(x)). Let M be as above. We can assume that M > 1. Let δ in ]0, δ0[
be such that 2δM < ε. Let η be associated to δ as in the above property. For
x ∈ ∂L2r∗ ,

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂L) = 1 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂L

ν(vL(y)) dHd−1(y) = ν(vL(x)) .

For any x in ∂L2r∗ , there exists a positive r(x, ε) such that, for any r < r(x, ε),

|Hd−1(B(x, r) ∩ ∂L)− αd−1r
d−1| ≤ ε αd−1r

d−1 ,
∣
∣
∣(αd−1r

d−1)−1

∫

B(x,r)∩∂L

ν(vL(y)) dHd−1(y)− ν(vL(x))
∣
∣
∣ ≤ ε .

The family of balls B(x, r), x ∈ ∂L2r∗ , r < min(r∗, η0, r(x, ε), ε, η), is a Vitali
relation for ∂L2r∗ . By the standard Vitali covering theorem, we may select a finite
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or countable collection of disjoint balls B(xi, ri), i ∈ I ′, such that: for any i in I ′,
xi ∈ ∂L2r∗ ,

ri < min(r∗, η0, r(xi, ε), ε, η)

and

either Hd−1
(
∂L2r∗ �

⋃

i∈I′

B(xi, ri)
)

= 0 or
∑

i∈I′

rd−1
i = ∞ .

Because for each i in I ′, ri is smaller than r(xi, ε),

αd−1(1− ε)
∑

i∈I′

rd−1
i ≤ Hd−1(Ω ∩ ∂L) < ∞,

and therefore the first case occurs so that we may select a finite subset I5 of I ′ such
that

Hd−1
(
∂L2r∗ �

⋃

i∈I5

B(xi, ri)
)

< ε .

We have a finite number of disjoint closed balls B(xi, ri), i ∈ I5. By slightly
increasing all the radii ri, we can keep the balls disjoint, with each ri strictly
smaller than min(r∗, η0, r(xi, ε), ε, η) for i in I5, and get the stronger inequality

Hd−1
(
∂L2r∗ �

⋃

i∈I5

B
o

(xi, ri)
)

< ε .

For each i in I5, let Pi be a convex open polygon inside the hyperplane hyp(xi, vL(xi))
such that

disc(xi, ri, vL(xi)) ⊂ Pi ⊂ disc(xi, ri(1 + δ), vL(xi)) ,

|Hd−2(∂Pi)− αd−2r
d−2
i | ≤ δαd−2r

d−2
i ,

|Hd−1(Pi)− αd−1r
d−1
i | ≤ δαd−1r

d−1
i .

We set ψ = Mδ(1 + δ) (hence ψ < ε < 1). Let i belong to I5. Let Di be the
cylinder

Di = cyl(Pi,Mδ(1 + δ)ri)

of basis Pi and height 2ψri. The point xi belongs to ∂L2r∗ and the radius ri is
smaller than η and r∗, so that

∀x ∈ ∂L ∩B(xi, ri) d2
(
x, hyp(xi, vL(xi))

)
≤ Mδ|x− xi|2 ,

whence
∂L ∩B(xi, ri) ⊂ cyl

(
disc(xi, ri, vL(xi)),Mδri

)
⊂ D

o

i .

We will approximate F by L inside Ω, and we will push the interfaces Γ1∩∂∗(Ω�F )
and Γ2 ∩ ∂∗F into Ω. We next handle the regions close to Γ inside the family of
balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4. We will adequately modify the set F to ensure
that no significant interface is created within these balls. Our technique consists in
building a small flat cylinder centered on Γ which we add (for indices in I1 ∪ I3)
or remove (for indices in I2 ∪ I4) to the set F . We have to design this operation
carefully in order not to create any significant additional interface. This is the place
where we tie together the covering of the boundary and the inner approximation.
Recall that we already chose a family of polygons Pi, i ∈ I1 ∪ I2 ∪ I3 ∪ I4. For
i ∈ I1 ∪ I2, we simply define Di to be the cylinder

Di = cyl(Pi,M0δ0(1 + δ0)ri);

see Figure 6. The construction of the cylinders associated to the indices i ∈ I3∪I4 is
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Di = cyl(Pi,M0,δ0(1 + δ0ri))

M0δ0(1 + δ0)ri

M0δ0ri

Bi = B(xi,ri)

B(xi,ri(1−√−γ))

B(xi,ri(1−2√−γ))

Γ∩Bi
is included
this layer

xi
v Ω(xi)

Pi

Figure 6. The cylinder Di for i ∈ I1 ∪ I2.

more complicated. Our technique consists in carefully choosing the height ti of the
cylinders cyl(Pi, ti) for i ∈ I3 ∪ I4. We examine the indices in I3 and I4 separately.

• Balls indexed by I3. Let i belong to I3. Because of the condition imposed
on ε, we have

|Ld(B(xi, ri) ∩ L)− αdr
d
i /2| ≤ γ αdr

d
i + ε ≤ 2γ αdr

d
i .

Since in addition

|Ld(B(xi, ri)� Ω)− αdr
d
i /2| ≤ γ αdr

d
i ,

it follows that

Ld(B(xi, ri) ∩ (Ω� L
o

)) ≤ 3γ αdr
d
i .

Thanks to the choice of the polygon Pi, we then have
∫

2γri<t<
√
γri

Hd−1((−tvΩ(xi) + Pi)� L
o

) dt ≤ Ld(B(xi, ri) ∩ (Ω� L
o

)) ≤ 3γαdr
d
i .

The condition on γ yields in particular
√
γ − 2γ ≥ √

γ/2. Hence there exists
ti ∈]2γri,

√
γri[ such that

Hd−1((−tivΩ(xi) + Pi)� L
o

) ≤ 6
√
γαdr

d−1
i .

Let Di be the cylinder Di = cyl(Pi, ti).
• Balls indexed by I4. Let i belong to I4. Because of the condition imposed

on ε, we have

|Ld(B(xi, ri) ∩ (Ω� L))− αdr
d
i /2| ≤ γ αdr

d
i + ε ≤ 2γ αdr

d
i .
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xi
Ω

Ωc

Γ

Bi

Pi

ti

vΩ(xi)

thin strand
included in L

Hd−1((Pi − tivΩ(xi)) ∩ L)
is small

Di = cyl(Pi, ti)

Figure 7. The cylinder Di for i ∈ I4.

Since in addition

|Ld(B(xi, ri)� Ω)− αdr
d
i /2| ≤ γ αdr

d
i ,

it follows that

Ld(B(xi, ri) ∩ L) ≤ 3γ αdr
d
i .

Thanks to the choice of the polygon Pi, we then have
∫

2γri<t<
√
γri

Hd−1((−tvΩ(xi) + Pi) ∩ L) dt ≤ Ld(B(xi, ri) ∩ L) ≤ 3γαdr
d
i .

The condition on γ yields in particular
√
γ − 2γ ≥ √

γ/2. Hence there exists
ti ∈]2γri,

√
γri[ such that

Hd−1((−tivΩ(xi) + Pi) ∩ L) ≤ 6
√
γαdr

d−1
i .

Let Di be the cylinder Di = cyl(Pi, ti) (see Figure 7). We have now built the whole
family of cylinders Di, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5. Moreover, the sets

D
o

i , i ∈ I1 ∪ I2 ∪ I3 ∪ I4 , B
o

(yj , sj) , j ∈ J0 ∪ J1 ∪ J2 ,
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completely cover Γ. It now remains to cover the region

R3 = Ω ∩ ∂L �

⋃

i∈I1∪I2∪I3∪I4∪I5

D
o

i �

⋃

j∈J0∪J1∪J2

B
o

(yj , sj) .

Since R3 does not intersect Γ, the distance

ρ =
1

8d
dist(Γ, R3)

is positive and also R3 is compact. From the preceding inequalities, we deduce that

Hd−1(R3) ≤ Hd−1(Ω ∩ ∂L� ∂L2r∗) +Hd−1
(
∂L2r∗ �

⋃

i∈I5

D
o

i

)

≤ ε+Hd−1
(
∂L2r∗ �

⋃

i∈I5

B
o

(xi, ri)
)

≤ 2ε .

By the definition of the Hausdorff measure Hd−1, there exists a collection of balls
B(yj , sj), j ∈ J3, such that

∀j ∈ J3 0 < sj < ρ, B(yj , sj) ∩R3 �= ∅ ,

R3 ⊂
⋃

j∈J3

B
o

(yj , sj) ,

∑

j∈J3

αd−1s
d−1
j ≤ 3ε .

By compactness, we might assume in addition that J3 is finite. For j ∈ J3, let xj

belong to B(yj , sj) ∩R3 and let Qj be the cube Q(xj , 4sj). We set

P =

Å
(Ω ∩ L) ∪

⋃

i∈I1∪I3∪I5

Di ∪
⋃

j∈J1

Qj

ã
�

⋃

i∈I2∪I4

Di �

⋃

j∈J0∪J2∪J3

Qj .

The sets Q
o

j , j ∈ J0 ∪ J1 ∪ J2 ∪ J3, and D
o

i, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5, cover ∂L ∪ Γ;
therefore

∂P ⊂
⋃

i∈I1∪I2∪I3∪I4∪I5

∂Di ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Thus P is polyhedral and ∂P is transverse to Γ. Since the sets

D
o

i , i ∈ I1 ∪ I3 , Q
o

j , j ∈ J1,

completely cover Γ
1
, while the sets

Di , i ∈ I2 ∪ I4 ∪ I5 , Qj , j ∈ J0 ∪ J2 ∪ J3,

do not intersect Γ
1
, then Γ

1
is included in the interior of P . Similarly, the sets

D
o

i , i ∈ I2 ∪ I4 , Q
o

j , j ∈ J2,

completely cover Γ
2
, while the sets

Di , i ∈ I1 ∪ I3 ∪ I5 , Qj , j ∈ J0 ∪ J1 ∪ J3,

do not intersect Γ
2
. Thus Γ

2
is included in the interior of the complement of P .

We next check that the set P ∩ Ω approximates the initial set F with respect to
the volume. We have

(P ∩ Ω)ΔF ⊂ (LΔF ) ∪
⋃

i∈I1∪I2∪I3∪I4∪I5

Di ∪
⋃

j∈J0∪J1∪J2∪J3

Qj ,
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whence

Ld((P ∩ Ω)ΔF ) ≤ ε+
∑

i∈I1∪I2∪I3∪I4

2αd−1r
d−1
i (1+δ0)

√
γri+
∑

i∈I5

2αd−1r
d−1
i (1+δ)ψri+

∑

j∈J0∪J1∪J2∪J3

αd(2sj)
d.

Yet each ri is smaller than γ,
∑

i∈I1∪I2∪I3∪I4

αd−1r
d−1
i ≤ 2Hd−1(Γ) ,

∑

i∈I5

αd−1r
d−1
i ≤ 2Hd−1(Ω ∩ ∂L) ≤ 2

νmin
(νmaxHd−1(∂∗F ∩ Ω) + ε) ,

∑

j∈J0∪J1∪J2∪J3

αd−1s
d−1
j ≤ 3

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε ,

so that

Ld((P ∩ Ω)ΔF ) ≤ ε+ 6
√
γHd−1(Γ) +

6ε

νmin
(νmaxHd−1(∂∗F ∩ Ω) + ε)

+ 3 · 2d αd

αd−1
(3γ + 4d

√
γHd−1(Γ) + ε) .

We next estimate the capacity of P . To do this, we examine the intersection of
∂P ∩Ω with each polyhedral cylinder. For i ∈ I1 ∪ I2, we use the obvious inclusion

P ∩ Ω ∩ ∂Di ⊂ Ω ∩ ∂Di .

For i ∈ I3 ∪ I4 ∪ I5, the sets ∂P ∩ Ω ∩ ∂Di require more attention. We consider
separately the indices of I3, I4 and I5.

• Cylinders indexed by I3. Let i be in I3. We have

Ω ∩ ∂P ∩ ∂Di ⊂ Ω ∩ (∂Di � L
o

) ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Yet, thanks to the construction of the cylinder Di,

Hd−1(Ω ∩ ∂Di � L
o

) ≤ Hd−1((−tivΩ(xi) + Pi)� L
o

) +Hd−2(∂Pi)2
√
γri

≤ 6
√
γαdr

d−1
i + 2αd−2r

d−2
i 2

√
γri ≤ 6

√
γ(αd + αd−2)r

d−1
i .

• Cylinders indexed by I4. Let i be in I4. We have

Ω ∩ ∂P ∩ ∂Di ⊂ Ω ∩ (∂Di ∩ L) ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Yet, thanks to the construction of the cylinder Di,

Hd−1(Ω ∩ ∂Di ∩ L) ≤ Hd−1((−tivΩ(xi) + Pi) ∩ L) +Hd−2(∂Pi)2
√
γri

≤ 6
√
γαdr

d−1
i + 2αd−2r

d−2
i 2

√
γri ≤ 6

√
γ(αd + αd−2)r

d−1
i .

• Cylinders indexed by I5. Let i be in I5. We set

Gi = disc
(
xi − ψrivL(xi),

√
1− ψ2ri, vL(xi)

)
.

We claim that the set Gi is included in the interior of L. Indeed, Gi ⊂ B(xi, ri) ∩
∂Di, yet ∂L ∩ B(xi, ri) ⊂ D

o

i; therefore Gi does not intersect ∂L. Since vL(xi) is
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the exterior normal vector to L at xi, then Gi is included in L
o
. The definition of

the set P implies that

∂P ∩Gi ⊂
⋃

j∈J0∪J1∪J2∪J3

∂Qj ,

whence

Ω ∩ ∂P ∩ ∂Di ⊂ (∂Di �Gi) ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Yet

Hd−1
(
∂Di�(Pi+ψrivL(xi))�Gi

)
≤2αd−2r

d−2
i 2ψri+αd−1r

d−1
i

(
1+δ−(1−ψ2)(d−1)/2

)

≤αd−1r
d−1
i

(
4
αd−2

αd−1
ψ + 1 + δ − (1− ψ2)(d−1)/2

)
.

Finally, we conclude that

Ω ∩ ∂P ⊂
⋃

i∈I1∪I2

(Ω ∩ ∂Di) ∪
⋃

i∈I3

(Ω ∩Di � L
o

) ∪
⋃

i∈I4

(Ω ∩ ∂Di ∩ L)

∪
⋃

i∈I5

(∂Di �Gi) ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Therefore

IΩ(P ) ≤
∑

i∈I1∪I2

∫

Ω∩∂Di

ν(vP (x)) dHd−1(x) + νmax

∑

i∈I3

Hd−1(Ω ∩ ∂Di � L
o

)

+ νmax

∑

i∈I4

Hd−1(Ω ∩ ∂Di ∩ L)

+
∑

i∈I5

(
ν(vL(xi))Hd−1(Pi) + νmaxHd−1

(
∂Di � (Pi + ψrivL(xi))�Gi

))

+ νmax

∑

j∈J0∪J1∪J2∪J3

Hd−1(∂Qj) .

We now use the various estimates obtained in the course of the approximation. We
get

IΩ(P ) ≤
∑

i∈I1∪I2

(
αd−1r

d−1
i (1 + δ0)ν(vΩ(xi)) + νmaxαd−2r

d−1
i 2M0δ0(1 + δ0)

2
)

+
∑

i∈I3∪I4

νmax

(
6
√
γ(αd + αd−2)r

d−1
i

)

+
∑

i∈I5

(
αd−1r

d−1
i (1 + δ)ν(vL(xi))

+ νmaxαd−1r
d−1
i

(
4
αd−2

αd−1
ψ + 1 + δ − (1− ψ2)(d−1)/2

))

+
∑

j∈J0∪J1∪J2∪J3

νmaxαd−12
d−1sd−1

j

≤ 1 + δ0
1− γ

∑

i∈I1

∫

B(xi,ri)∩∂∗(Ω�F )

ν(vΩ(y)) dHd−1(y)
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+
1 + δ0
1− γ

∑

i∈I2

∫

B(xi,ri)∩∂∗F

ν(vΩ(y)) dHd−1(y)

+
1 + δ

1− ε

∑

i∈I5

∫

B(xi,ri)∩∂L

ν(vL(y)) dHd−1(y)

+
∑

i∈I1∪I2∪I3∪I4∪I5

νmaxαd−1r
d−1
i

( αd−2

ald−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ 4

αd−2

αd−1
ψ

+ 1 + δ − (1− ψ2)(d−1)/2
)
+ νmax2

d−13
(
3γ + 4d

√
γHd−1(Γ) + ε

)

≤ 1 + δ0
1− γ

Å∫
Γ1∩∂∗(Ω�F )

ν(vΩ(y)) dHd−1(y) +

∫

Γ2∩∂∗F

ν(vΩ(y)) dHd−1(y)

+

∫

Ω∩∂L

ν(vL(y)) dHd−1(y)

ã

+ 2(Hd−1(Γ) +Hd−1(Ω ∩ ∂L))νmax

(αd−2

αd−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ 4

αd−2

αd−1
ψ

+ 1 + δ − (1− ψ2)(d−1)/2
)
+ νmax

(
2d−13

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε
)

≤ 1 + δ0
1− γ

(
IΩ(F ) + ε)

+ 2
(
Hd−1(Γ)+

νmaxIΩ(F )+ε

νmin

)
νmax

(αd−2

αd−1
5γ+6

√
γ
αd + αd−2

αd−1
+δε+4

αd−2

αd−1
ε
)

+ νmax

(
2d−13

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε
)
,

where we have used the inequality ψ < ε in the last step. We have also used the
inclusions

∀i ∈ I1 B(xi, ri) ∩ ∂∗(Ω� F ) ⊂ Γ1 ∩ ∂∗(Ω� F ) ,

∀i ∈ I2 B(xi, ri) ∩ ∂∗F ⊂ Γ2 ∩ ∂∗F .

Since δ0, δ, γ, ε can be chosen arbitrarily small, we have obtained the desired ap-
proximation. �

5. Positivity of φ̃Ω

We suppose that

(9)

∫

[0,+∞[

x dΛ(x) < ∞.

We will prove that φ̃Ω > 0 if and only if Λ(0) < 1− pc(d). In fact we know that if
the condition (9) is satisfied,

Λ(0) < 1− pc(d) ⇐⇒ ∃v , ν(v) > 0 ⇐⇒ ∀v , ν(v) > 0 .

Thus, the implication

Λ(0) ≥ 1− pc(d) =⇒ φ̃Ω = 0

is trivial. We suppose that Λ(0) < 1 − pc(d). Since ν satisfies the weak triangle
inequality, the function v �→ ν(v) is continuous, and so as soon as Λ(0) < 1− pc(d)
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and (9) is satisfied, we have

νmin = min
S1

ν > 0 .

If P is a polyhedral set, then Hd−1((∂P ∩ Ω) � (∂∗P ∩ Ω)) = 0. We then obtain
that

φ̃Ω ≥ νmin × inf

{

Hd−1(S ∩ Ω)

∣
∣
∣
∣
∣

S hypersurface that cuts Γ1 from Γ2 in Ω,
d(S,Γ1 ∪ Γ2) > 0}

}

.

We recall that the hypersurface S cuts Γ1 from Γ2 in Ω if S intersects any
continuous path from a point in Γ1 to a point in Γ2 that is included in Ω. We
consider such a hypersurface S ⊂ R

d, and we want to bound from below the quantity
Hd−1(S ∩ Ω) independently on S.

The idea of the proof is the following. We consider a path from Γ1 to Γ2 in Ω.
We construct a tubular neighbourhood of this path of diameter depending only on
the domain and not on the path itself that lies in Ω except at its endpoints. Then
we prove that it is not very deformed compared to a straight tube. Since S has to
cut this tube, we obtain the desired lower bound Hd−1(S ∩ Ω).

For i = 1, 2, we can find xi in Γi and ri > 0 such that Γ ∩ B(xi, ri) ⊂ Γi and
Γ ∩ B(xi, ri) is a C1 hypersurface. We denote by vΩ(xi) the exterior normal unit
vector to Ω at xi and by TΩ(xi) the hyperplane tangent to Γ at xi. Since Γ is of
class C1 in a neighbourhood of xi and Ω is a Lipschitz domain, by applying Lemma
1 we know that for all θ > 0 there exists ε > 0 depending on (Ω,Γ,Γ1,Γ2, x1, x2)
such that for i = 1, 2 we have

⎧
⎨

⎩

Ω ∩B(xi, 2ε) is connected ,
Γ ∩B(xi, 2ε) ⊂ V2(TΩ(xi), 2ε sin θ) ∩B(xi, 2ε) ,
Γ ∩B(xi, 2ε) ⊂ Γi .

We fix θ small enough to have 2ε sin θ < ε/2. We define

Ai = TΩ(xi) ∩B(xi, ε) and Di = cyl(Ai, ε) ,

and then
Ω̂ = Ω ∪ D̊1 ∪ D̊2 ,

where D̊i is the interior of Di for i = 1, 2. We define

Xi = {z ∈ D̊i |xiz · vΩ(xi) > ε/2} ⊂ Ω̂ .

Then Xi ⊂ Ω̂�Ω. Each path r from a point y1 ∈ X1 to a point y2 ∈ X2 contains a
path r′ from a point y′1 ∈ Γ1 to a point y′2 ∈ Γ2 such that r′ ⊂ Ω; thus S intersects
r. We consider the set

Vi = {z ∈ Xi | d2(z, ∂Xi) > ε/8} .
Let ŷ1 ∈ V1, ŷ2 ∈ V2 such that d2(ŷi, ∂Xi) > ε/4 for i = 1, 2. Since Ω̂ is obviously

path-connected, there exists a path r̂ from ŷ1 to ŷ2 in Ω̂. The path r̂ is compact

and Ω̂ is open, so δ = d2(r̂, ∂Ω̂) > 0. We thus can find a path r included in
V2(r̂,min(δ/2, ε/8)) which is a C∞ submanifold of Rd of dimension 1 and which has
one endpoint, denoted by y1, in V1, and the other one, denoted by y2, in V2.

As we previously explained, d2(r, ∂Ω̂) > 0, so there exists a positive η1 such that

V2(r, η1) ⊂ Ω̂. We can suppose that η1 < ε/16 in order to obtain that B(yi, η1) ⊂ Xi

for i = 1, 2. For all z in r we denote by Nr(z) the hyperplane orthogonal to r at
z, and by Nη

r (z) the subset of Nr(z) composed of the points of Nr(z) that are at a
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Γ1

Ω

Γ2
x1

Γ

x2

2ε

r tub(r,η)

tub(r,η)

2η

r

D1X1

V1

x1

y1
B(x1,2ε)

ε/2

Figure 8. Construction of tub(r, η).

distance smaller than or equal to η of z. The tubular neighbourhood of r of radius
η, denoted by tub(r, η), is the set of all the points z in R

d such that there exists a
geodesic of length smaller than or equal to η from z that meets r orthogonally, i.e.,

tub(r, η) =
⋃

z∈r

Nη
r (z)

(see for example [17]). We have a picture of this tubular neighbourhood in Figure
8. Since r is a compact C∞ submanifold of Rd which is complete, there exists an
η2 > 0 small enough such that for all η ≤ η2, the tubular neighbourhood of r of
diameter η is well defined by a C∞-diffeomorphism (see for example [3], Theorem
2.7.12, or [17]); i.e., there exists a C∞-diffeomorphism ψ from

Nrη = {(z, v) , z ∈ r , v ∈ Nη
r (z)}

to tub(r, η). We choose a positive η smaller than min(η1, η2). We stress the fact
that this η depends on (Ω,Γ,Γ1,Γ2) but not on S.
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Let (I, h) be a parametrisation of class C∞ of r; i.e., I = [a, b] is a closed interval
of R and h : I → r is a C∞-diffeomorphism which is an immersion. Let z be
in r, and uz = h−1(z) ∈ I. The vector h′(uz) is tangent to r at z, and there
exists some vectors (e2(z), ..., ed(z)) such that (h′(uz), e2(z), ..., ed(z)) is a direct
basis of Rd. There exists a neighbourhood Uz of uz in I such that for all u ∈ Uz,
(h′(u), e2(z), ..., ed(z)) is still a basis of R

d, since h′ is continuous. Indeed the
condition for a family of vectors (α1, ..., αd) to be a basis of Rd is an open condition,
because it corresponds to det((α1, ..., αd)) > 0, where det is the determinant of the
matrix. We apply the Gram-Schmidt process to the basis (h′(u), e2(z), ..., ed(z))
to obtain a direct orthonormal basis (h′(u)/‖h′(u)‖, v2(u, z), ..., vd(u, z)) of Rd for
all u ∈ Uz, such that the dependence of (h′(u)/‖h′(u)‖, v2(u, z), ..., vd(u, z)) on
u ∈ Uz is of class C∞. We remark that the family (v2(u, z), ..., vd(u, z)) is a direct
orthonormal basis of Nr(h(u)) for all u ∈ Uz. We have associated with each z ∈ r
a neighbourhood Uz of uz = h−1(z) in I; we can obviously suppose that Uz is
an interval which is open in I. Since (Uz, z ∈ r) is a covering of the compact
I, we can extract from it a finite covering (Uj , j = 1, ..., n). We can choose this
family to be minimal, i.e., such that (Uj , j ∈ {1, ..., n} � j0) is not a covering of
I for any j0 ∈ {1, ..., n}. We then reorder the (Uj , j = 1, ..., n) (keeping the same
notation) by the increasing order of their left end point in I ⊂ R. Since the family
(Uj) is minimal, each point of I belongs either to a unique set Uj , j ∈ {1, ..., n},
or to exactly two sets Uj and Uj+1 for j ∈ {1, ..., n − 1}. We denote by aj the
middle of the non-empty open interval Uj ∩ Uj+1 for j ∈ {1, ..., n − 1}, and by
(h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) the direct orthonormal basis defined previously
on Uj for j ∈ {1, ..., n}. We want to construct a family of direct orthonormal basis
(h′(u)/‖h′(u)‖, f2(u), ..., fd(u)) of Rd such that the function

ψ : u ∈ I �→ (h′(u)/‖h′(u)‖, f2(u), ..., fd(u))

is of class C∞. We have to define a concatenation of the (h′(u)/‖h′(u)‖, v2(u, j), ...,
vd(u, j)) over the different sets Uj . For u ∈ [a, a1], we define

ψ(u) = (h′(u)/‖h′(u)‖, v2(u, 1), ..., vd(u, 1)) .

Thus the function ψ defined on [a, a1] is of class C∞. On U1 ∩ U2 we have defined
two different direct orthonormal bases (h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) for j = 1
and j = 2 that have the same first vector. Let φ1 : U1 ∩ U2 → SOd−1(R) be the
function of class C∞ that associates to each u ∈ U1 ∩ U2 the matrix of change of
basis from (v2(u, 2), ..., vd(u, 2)) to (v2(u, 1), ..., vd(u, 1)).

If b1 is the right end point of U1 ∩U2, then φ1 is in particular defined on [a1, b1[.
Let g1 be a C∞-diffeomorphism from [a1, b1[ to [a1,∞[ which is strictly increasing
(so g1(a1) = a1) and such that all the derivatives of g1 at a1 are null. Then φ1 ◦g−1

1

is defined on [a1,+∞[, and all its derivatives at a1 are equal to those of φ1. We
then transform all the orthonormal bases (v2(u, j), ..., vd(u, j)) of R

d−1 for j ≥ 2 and
u ≥ a1 by the change of basis φ1 ◦ g−1

1 , and we denote the new direct orthonormal
basis of R

d−1 obtained this way by (ṽ2(u, j), ..., ṽd(u, j)). We then define ψ on
]a1, a2] by

ψ(u) = (h′(u)/‖h′(u)‖, ṽ2(u, 2), ..., ṽd(u, 2)) ,

and we remark that ψ(u) still defines a direct orthonormal basis of Rd. The function
ψ is of class C∞ on [a, a2], including at a1. We iterate this process with the family
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of basis

(h′(u)/‖h′(u)‖, ṽ2(u, j), ..., ṽd(u, j)) , j = 2, ..., n,

at a2, etc., finitely many times since we work with a finite covering of I. In the end
we obtain a function

ψ ◦ h−1 : r → SOd−1(R)

which is of class C∞, and for all z ∈ r, the set of the points of Rd that have for the
first coordinate 0 in the basis ψ ◦ h−1(z) is exactly the hyperplane Nr(z).

For each t = (t2, ..., td−1) ∈ {z ∈ R
d−1 | d(z, 0) ≤ η}, the set

rt = {y ∈ R
d | ∃z ∈ r , y has coordinates (0, t2, ..., td−1) in the basis ψ ◦ h−1(z)}

is a continuous path (even of class C∞) from a point inX1 to a point inX2; therefore

rt ∩ S ∩ Ω �= ∅ .

Moreover, since d(S,Γ1 ∪ Γ2) > 0, we obtain that

(10) rt ∩ S ∩ Ω �= ∅ .

For each y ∈ tub(r, η), there exists a unique zy ∈ r such that y ∈ Nr(zy), so we
can associate to y its coordinates (0, t2(y), ..., td(y)) in the basis ψ ◦ h−1(zy). We
define the projection p of tub(r, η) on Nη

r (y1) that associates to each y in tub(r, η)
the point of coordinate (0, t2(y), ..., td(y)) in the basis ψ ◦ h−1(y1). Then p is of
class C∞, as is ψ ◦ h−1. If z belongs to Nη

r (y1) and if t(z) = (t2(z), ..., td(z)), then
we know by equation (10) that there exists a point on rt(z) that intersects S in Ω.
Moreover, rt(z) is exactly the set of the points y of tub(r, η) whose image p(y) by
this projection is the point z. Thus

p(S ∩ tub(r, η) ∩ Ω) = Nη
r (y1) .

Since tub(r, η) is compact, p is a Lipschitz function on tub(r, η), and so there exists
a constant K, depending on p, hence on Ω, r and η but not on S, such that

Hd−1(S∩Ω) ≥ Hd−1(S∩tub(r, η)∩Ω) ≥ KHd−1(p(S∩tub(r, η))) ≥ Kαd−1η
d−1 .

This ends the proof of the positivity of φ̃Ω when Λ(0) < 1− pc(d).
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