Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Law of large numbers for the maximal flow through a domain of $\mathbb {R}^d$ in first passage percolation
HTML articles powered by AMS MathViewer

by Raphaël Cerf and Marie Théret PDF
Trans. Amer. Math. Soc. 363 (2011), 3665-3702 Request permission

Abstract:

We consider the standard first passage percolation model in the rescaled graph $\mathbb {Z}^d/n$ for $d\geq 2$, and a domain $\Omega$ of boundary $\Gamma$ in $\mathbb {R}^d$. Let $\Gamma ^1$ and $\Gamma ^2$ be two disjoint open subsets of $\Gamma$, representing the parts of $\Gamma$ through which some water can enter and escape from $\Omega$. We investigate the asymptotic behaviour of the flow $\phi _n$ through a discrete version $\Omega _n$ of $\Omega$ between the corresponding discrete sets $\Gamma ^1_n$ and $\Gamma ^2_n$. We prove that under some conditions on the regularity of the domain and on the law of the capacity of the edges, $\phi _n$ converges almost surely towards a constant $\phi _{\Omega }$, which is the solution of a continuous non-random min-cut problem. Moreover, we give a necessary and sufficient condition on the law of the capacity of the edges to ensure that $\phi _{\Omega } >0$.
References
  • Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292
  • P. Assouad and T. Quentin de Gromard. Sur la dérivation des mesures dans $\mathbb {R}^n$. 1998. Unpublished note.
  • Marcel Berger and Bernard Gostiaux, Géométrie différentielle, Collection U/Série “Mathématiques”, Librairie Armand Colin, Paris, 1972 (French). Maîtrise de mathématiques. MR 0494180
  • A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. II, Proc. Cambridge Philos. Soc. 42 (1946), 1–10. MR 14414, DOI 10.1017/s0305004100022660
  • Béla Bollobás, Graph theory, Graduate Texts in Mathematics, vol. 63, Springer-Verlag, New York-Berlin, 1979. An introductory course. MR 536131
  • Raphaël Cerf, Large deviations for three dimensional supercritical percolation, Astérisque 267 (2000), vi+177 (English, with English and French summaries). MR 1774341
  • Raphaël Cerf and Marie Théret. Lower large deviations for the maximal flow through a domain of $\mathbb {R}^d$ in first passage percolation. To appear in Probability Theory and Related Fields, available from \verb+arxiv.org/abs/0907.5501+, 23 pages, 2009.
  • Raphaël Cerf and Marie Théret. Upper large deviations for the maximal flow through a domain of $\mathbb {R}^d$ in first passage percolation. To appear in Annals of Applied Probability, available from \verb+arxiv.org/abs/0907.5499+, 24 pages, 2009.
  • R. Cerf, The Wulff crystal in Ising and percolation models, Lecture Notes in Mathematics, vol. 1878, Springer-Verlag, Berlin, 2006. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004; With a foreword by Jean Picard. MR 2241754
  • E. De Giorgi, F. Colombini, and L. C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Scuola Normale Superiore, Pisa, 1972 (Italian). MR 0493669
  • Ennio De Giorgi, Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad $r$ dimensioni, Ricerche Mat. 4 (1955), 95–113 (Italian). MR 74499
  • Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
  • K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
  • Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
  • Olivier Garet, Capacitive flows on a 2D random set, Ann. Appl. Probab. 19 (2009), no. 2, 641–660. MR 2521883, DOI 10.1214/08-AAP556
  • Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
  • Alfred Gray, Tubes, 2nd ed., Progress in Mathematics, vol. 221, Birkhäuser Verlag, Basel, 2004. With a preface by Vicente Miquel. MR 2024928, DOI 10.1007/978-3-0348-7966-8
  • Harry Kesten, Aspects of first passage percolation, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 125–264. MR 876084, DOI 10.1007/BFb0074919
  • Harry Kesten, Surfaces with minimal random weights and maximal flows: a higher-dimensional version of first-passage percolation, Illinois J. Math. 31 (1987), no. 1, 99–166. MR 869483
  • Serge Lang, Differential manifolds, 2nd ed., Springer-Verlag, New York, 1985. MR 772023, DOI 10.1007/978-1-4684-0265-0
  • Umberto Massari and Mario Miranda, Minimal surfaces of codimension one, North-Holland Mathematics Studies, vol. 91, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 95. MR 795963
  • Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
  • Thierry Quentin de Gromard, Strong approximation of sets in $\textrm {BV}(\Omega )$, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), no. 6, 1291–1312. MR 2488060, DOI 10.1017/S0308210507000492
  • Raphaël Rossignol and Marie Théret, Law of large numbers for the maximal flow through tilted cylinders in two-dimensional first passage percolation, Stochastic Process. Appl. 120 (2010), no. 6, 873–900. MR 2610330, DOI 10.1016/j.spa.2010.02.005
  • Raphaël Rossignol and Marie Théret. Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques, 46(4):1093–1131, 2010.
  • Marie Théret. Upper large deviations for maximal flows through a tilted cylinder. Available from \verb+arxiv.org/abs/0907.0614+, 14 pages, 2009.
  • Yu Zhang, Critical behavior for maximal flows on the cubic lattice, J. Statist. Phys. 98 (2000), no. 3-4, 799–811. MR 1749233, DOI 10.1023/A:1018631726709
  • Yu Zhang. Limit theorems for maximum flows on a lattice. Available from \verb+arxiv.org/+ \verb+abs/0710.4589+, 2007.
  • William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60K35, 49Q20
  • Retrieve articles in all journals with MSC (2010): 60K35, 49Q20
Additional Information
  • Raphaël Cerf
  • Affiliation: Mathématique, Université Paris Sud, bâtiment 425, 91405 Orsay Cedex, France
  • MR Author ID: 349311
  • Email: rcerf@math.u-psud.fr
  • Marie Théret
  • Affiliation: DMA, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France
  • Address at time of publication: LPMA, Université Paris Diderot Site Chevaleret, Case 7012, 75205 Paris Cedex 12 France
  • Email: marie.theret@ens.fr, marie.theret@univ-paris-diderot.fr
  • Received by editor(s): November 5, 2009
  • Published electronically: February 25, 2011
  • © Copyright 2011 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 363 (2011), 3665-3702
  • MSC (2010): Primary 60K35, 49Q20
  • DOI: https://doi.org/10.1090/S0002-9947-2011-05341-9
  • MathSciNet review: 2775823