On quasiconformal self-mappings of the unit disk satisfying Poisson’s equation
HTML articles powered by AMS MathViewer
- by David Kalaj and Miroslav Pavlović
- Trans. Amer. Math. Soc. 363 (2011), 4043-4061
- DOI: https://doi.org/10.1090/S0002-9947-2011-05081-6
- Published electronically: March 23, 2011
- PDF | Request permission
Abstract:
Let $\mathcal {QC}(K,g)$ be a family of $K$-quasiconformal mappings of the open unit disk onto itself satisfying the PDE $\Delta w =g$, $g\in C(\overline {\mathbb {U}})$, $w(0)=0$. It is proved that $\mathcal {QC}(K,g)$ is a uniformly Lipschitz family. Moreover, if $|g|_\infty$ is small enough, then the family is uniformly bi-Lipschitz. The estimations are asymptotically sharp as $K \to 1$ and $|g|_\infty \to 0$, so $w\in \mathcal {QC}(K,g)$ behaves almost like a rotation for sufficiently small $K$ and $|g|_\infty$.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- G. D. Anderson and M. K. Vamanamurthy, Hölder continuity of quasiconformal mappings of the unit ball, Proc. Amer. Math. Soc. 104 (1988), no. 1, 227–230. MR 958072, DOI 10.1090/S0002-9939-1988-0958072-6
- Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. MR 1184139, DOI 10.1007/b97238
- Gustave Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156–165 (French). MR 16973
- Richard Fehlmann and Matti Vuorinen, Mori’s theorem for $n$-dimensional quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 111–124. MR 975570, DOI 10.5186/aasfm.1988.1304
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Juha Heinonen, Lectures on Lipschitz analysis, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 100, University of Jyväskylä, Jyväskylä, 2005. MR 2177410
- Erhard Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101–105. MR 104933
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- David Kalaj, Quasiconformal and harmonic mappings between Jordan domains, Math. Z. 260 (2008), no. 2, 237–252. MR 2429610, DOI 10.1007/s00209-007-0270-9
- David Kalaj, On harmonic quasiconformal self-mappings of the unit ball, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 261–271. MR 2386850
- David Kalaj and Miodrag Mateljević, Inner estimate and quasiconformal harmonic maps between smooth domains, J. Anal. Math. 100 (2006), 117–132. MR 2303306, DOI 10.1007/BF02916757
- —, On certain nonlinear elliptic PDE and quasiconfomal mapps between Euclidean surfaces, Potential Analysis 34 (2011), no. 1, 13–22.
- David Kalaj and Miroslav Pavlović, Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 159–165. MR 2140304
- H. Kneser: Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123–124.
- Miljan Knežević and Miodrag Mateljević, On the quasi-isometries of harmonic quasiconformal mappings, J. Math. Anal. Appl. 334 (2007), no. 1, 404–413. MR 2332565, DOI 10.1016/j.jmaa.2006.12.069
- O. Martio, On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 425 (1968), 10. MR 0236382
- M. Mateljević and M. Vuorinen, On harmonic quasiconformal quasi-isometries, J. Inequal. Appl. , posted on (2010), Art. ID 178732, 19. MR 2665497, DOI 10.1155/2010/178732
- Akira Mori, On an absolute constant in the theory of quasi-conformal mappings, J. Math. Soc. Japan 8 (1956), 156–166. MR 79091, DOI 10.2969/jmsj/00820156
- Dariusz Partyka and Ken-ichi Sakan, On bi-Lipschitz type inequalities for quasiconformal harmonic mappings, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 579–594. MR 2337496
- Miroslav Pavlović, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 365–372. MR 1922194
- Songliang Qiu, On Mori’s theorem in quasiconformal theory, Acta Math. Sinica (N.S.) 13 (1997), no. 1, 35–44. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 2, 319. MR 1465533, DOI 10.1007/BF02560522
- T. Radó, Aufgabe 41. (Gestellt in Jahresbericht D. M. V. 35, 49) Lösung von H. Kneser, Jahresbericht D. M. V. 35, 123–124 ((1926)) (German).
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Erik Talvila, Necessary and sufficient conditions for differentiating under the integral sign, Amer. Math. Monthly 108 (2001), no. 6, 544–548. MR 1840661, DOI 10.2307/2695709
- Luen-Fai Tam and Tom Y.-H. Wan, Harmonic diffeomorphisms into Cartan-Hadamard surfaces with prescribed Hopf differentials, Comm. Anal. Geom. 2 (1994), no. 4, 593–625. MR 1336897, DOI 10.4310/CAG.1994.v2.n4.a5
- Luen-Fai Tam and Tom Y. H. Wan, Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space, J. Differential Geom. 42 (1995), no. 2, 368–410. MR 1366549
- Luen-Fai Tam and Tom Y.-H. Wan, On quasiconformal harmonic maps, Pacific J. Math. 182 (1998), no. 2, 359–383. MR 1609587, DOI 10.2140/pjm.1998.182.359
- Vassilij S. Vladimirov, Equazioni della fisica matematica, Edizioni Mir, Moscow, 1987 (Italian). Translated from the fourth Russian edition by Ernest Kozlov. MR 1018346
- Tom Yau-Heng Wan, Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differential Geom. 35 (1992), no. 3, 643–657. MR 1163452
- Zhong Li and Gui Zhen Cui, A note on Mori’s theorem of $K$-quasiconformal mappings, Acta Math. Sinica (N.S.) 9 (1993), no. 1, 55–62. A Chinese summary appears in Acta Math. Sinica 37 (1994), no. 2, 287. MR 1235641, DOI 10.1007/BF02559983
Bibliographic Information
- David Kalaj
- Affiliation: Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b. 81000 Podgorica, Montenegro
- MR Author ID: 689421
- Email: davidkalaj@gmail.com
- Miroslav Pavlović
- Affiliation: Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Email: pavlovic@matf.bg.ac.rs
- Received by editor(s): May 7, 2008
- Received by editor(s) in revised form: April 12, 2009
- Published electronically: March 23, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 4043-4061
- MSC (2010): Primary 30C62
- DOI: https://doi.org/10.1090/S0002-9947-2011-05081-6
- MathSciNet review: 2792979