Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics
HTML articles powered by AMS MathViewer

by Alexey V. Bolsinov and Vladimir S. Matveev
Trans. Amer. Math. Soc. 363 (2011), 4081-4107
DOI: https://doi.org/10.1090/S0002-9947-2011-05187-1
Published electronically: March 21, 2011

Abstract:

Two metrics $g$ and $\bar g$ are geodesically equivalent if they share the same (unparameterized) geodesics. We introduce two constructions that allow one to reduce many natural problems related to geodesically equivalent metrics, such as the classification of local normal forms and the Lie problem (the description of projective vector fields), to the case when the $(1,1)-$tensor $G^i_j:= g^{ik}\bar g_{kj}$ has one real eigenvalue, or two complex conjugate eigenvalues, and give first applications. As a part of the proof of the main result, we generalise the Topalov-Sinjukov (hierarchy) Theorem for pseudo-Riemannian metrics.
References
  • A. V. Aminova, Pseudo-Riemannian manifolds with general geodesics, Uspekhi Mat. Nauk 48 (1993), no. 2(290), 107–164 (Russian); English transl., Russian Math. Surveys 48 (1993), no. 2, 105–160. MR 1239862, DOI 10.1070/RM1993v048n02ABEH001014
  • A. V. Aminova, Projective transformations of pseudo-Riemannian manifolds, J. Math. Sci. (N.Y.) 113 (2003), no. 3, 367–470. Geometry, 9. MR 1965077, DOI 10.1023/A:1021041802041
  • E. Beltrami, Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette, Ann. Mat., 1 (1865), no. 7, 185–204.
  • Alexey V. Bolsinov and Vladimir S. Matveev, Geometrical interpretation of Benenti systems, J. Geom. Phys. 44 (2003), no. 4, 489–506. MR 1943174, DOI 10.1016/S0393-0440(02)00054-2
  • Robert L. Bryant, Gianni Manno, and Vladimir S. Matveev, A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields, Math. Ann. 340 (2008), no. 2, 437–463. MR 2368987, DOI 10.1007/s00208-007-0158-3
  • Lennart Carleson, Mergelyan’s theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167–175. MR 198209, DOI 10.7146/math.scand.a-10741
  • Georges de Rham, Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv. 26 (1952), 328–344 (French). MR 52177, DOI 10.1007/BF02564308
  • Michael Eastwood and Vladimir Matveev, Metric connections in projective differential geometry, Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 339–350. MR 2384718, DOI 10.1007/978-0-387-73831-4_{1}6
  • Luther Pfahler Eisenhart, Non-Riemannian geometry, American Mathematical Society Colloquium Publications, vol. 8, American Mathematical Society, Providence, RI, 1990. Reprint of the 1927 original. MR 1466961, DOI 10.1090/coll/008
  • G. Fubini, Sui gruppi transformazioni geodetiche, Mem. Acc. Torino 53(1903), 261–313.
  • G. W. Gibbons, C. M. Warnick, and M. C. Werner, Light bending in Schwarzschild-de Sitter: projective geometry of the optical metric, Classical Quantum Gravity 25 (2008), no. 24, 245009, 9. MR 2461162, DOI 10.1088/0264-9381/25/24/245009
  • J. Haantjes, On $X_m$-forming sets of eigenvectors, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 158–162. MR 0070232
  • G. S. Hall, Some remarks on symmetries and transformation groups in general relativity, Gen. Relativity Gravitation 30 (1998), no. 7, 1099–1110. MR 1632505, DOI 10.1023/A:1026604822781
  • G. S. Hall, Projective symmetry in FRW spacetimes, Classical Quantum Gravity 17 (2000), no. 22, 4637–4644. MR 1797960, DOI 10.1088/0264-9381/17/22/304
  • G. S. Hall, Symmetries and curvature structure in general relativity, World Scientific Lecture Notes in Physics, vol. 46, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. MR 2109072, DOI 10.1142/1729
  • G. S. Hall and D. P. Lonie, Projective collineations in spacetimes, Classical Quantum Gravity 12 (1995), no. 4, 1007–1020. MR 1330299
  • G. S. Hall and D. P. Lonie, The principle of equivalence and projective structure in spacetimes, Classical Quantum Gravity 24 (2007), no. 14, 3617–3636. MR 2339411, DOI 10.1088/0264-9381/24/14/005
  • G. S. Hall and D. P. Lonie, The principle of equivalence and cosmological metrics, J. Math. Phys. 49 (2008), no. 2, 022502, 13. MR 2392851, DOI 10.1063/1.2837431
  • Nicholas J. Higham, Functions of matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. Theory and computation. MR 2396439, DOI 10.1137/1.9780898717778
  • Volodymyr Kiosak and Vladimir S. Matveev, Complete Einstein metrics are geodesically rigid, Comm. Math. Phys. 289 (2009), no. 1, 383–400. MR 2504854, DOI 10.1007/s00220-008-0719-7
  • Volodymyr Kiosak and Vladimir S. Matveev, Proof of the projective Lichnerowicz conjecture for pseudo-Riemannian metrics with degree of mobility greater than two, Comm. Math. Phys. 297 (2010), no. 2, 401–426. MR 2651904, DOI 10.1007/s00220-010-1037-4
  • J.-L. Lagrange, Sur la construction des cartes géographiques, Nouveaux Mémoires de l’Académie des Sciences et Bell-Lettres de Berlin, 1779.
  • T. Levi-Civita, Sulle transformazioni delle equazioni dinamiche, Ann. di Mat., serie $2^a$, 24(1896), 255–300.
  • S. Lie, Untersuchungen über geodätische Kurven, Math. Ann. 20(1882); Sophus Lie Gesammelte Abhandlungen, Band 2, erster Teil, 267–374. Teubner, Leipzig, 1935.
  • G. Manno, V. S. Matveev, $2$-dim metrics admitting two projective vector fields near the points where the vector fields are linearly dependent, in preparation.
  • V. S. Matveev and P. Ĭ. Topalov, Trajectory equivalence and corresponding integrals, Regul. Chaotic Dyn. 3 (1998), no. 2, 30–45 (English, with English and Russian summaries). MR 1693470, DOI 10.1070/rd1998v003n02ABEH000069
  • Vladimir S. Matveev and Peter J. Topalov, Quantum integrability of Beltrami-Laplace operator as geodesic equivalence, Math. Z. 238 (2001), no. 4, 833–866. MR 1872577, DOI 10.1007/s002090100280
  • Vladimir S. Matveev, Hyperbolic manifolds are geodesically rigid, Invent. Math. 151 (2003), no. 3, 579–609. MR 1961339, DOI 10.1007/s00222-002-0263-6
  • Vladimir S. Matveev, Three-dimensional manifolds having metrics with the same geodesics, Topology 42 (2003), no. 6, 1371–1395. MR 1981360, DOI 10.1016/S0040-9383(03)00004-1
  • Vladimir S. Matveev, Lichnerowicz-Obata conjecture in dimension two, Comment. Math. Helv. 80 (2005), no. 3, 541–570. MR 2165202, DOI 10.4171/CMH/25
  • V. S. Matveev, Beltrami problem, Lichnerowicz-Obata conjecture and applications of integrable systems in differential geometry, Tr. Semin. Vektorn. Tenzorn. Anal. 26(2005), 214–238.
  • Vladimir S. Matveev, Proof of the projective Lichnerowicz-Obata conjecture, J. Differential Geom. 75 (2007), no. 3, 459–502. MR 2301453
  • Vladimir S. Matveev, On projectively equivalent metrics near points of bifurcation, Topological methods in the theory of integrable systems, Camb. Sci. Publ., Cambridge, 2006, pp. 215–240. MR 2454556
  • V. S. Matveev, Two-dimensional metrics admitting precisely one projective vector field, to appear in Math. Ann., arXiv:math/0802.2344.
  • V. S. Matveev, Pseudo-Riemannian metrics on closed surfaces whose geodesic flows admit nontrivial integrals quadratic in momenta, and proof of the projective Obata conjecture for two-dimensional pseudo-Riemannian metrics, J. Math. Soc. Jpn., to appear, arXiv:math/1002.3934.
  • Josef Mikeš, Global geodesic mappings and their generalizations for compact Riemannian spaces, Differential geometry and its applications (Opava, 1992) Math. Publ., vol. 1, Silesian Univ. Opava, Opava, 1993, pp. 143–149. MR 1255535
  • J. Mikeš, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. 78 (1996), no. 3, 311–333. Geometry, 2. MR 1384327, DOI 10.1007/BF02365193
  • P. Painlevé, Sur les intégrales quadratiques des équations de la Dynamique, Compt. Rend., 124(1897), 221–224.
  • A. Z. Petrov, Einstein spaces, Pergamon Press, Oxford-Edinburgh-New York, 1969. Translated from the Russian by R. F. Kelleher; Translation edited by J. Woodrow. MR 0244912
  • A. Z. Petrov, Novye metody v obshcheĭ teorii otnositel′nosti, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0207365
  • J. A. Schouten, Erlanger Programm und Übertragungslehre. Neue Gesichtspunkte zur Grundlegung der Geometrie, Rendiconti Palermo 50(1926), 142–169.
  • I. G. Shandra, On the geodesic mobility of Riemannian spaces, Mat. Zametki 68 (2000), no. 4, 620–626 (Russian, with Russian summary); English transl., Math. Notes 68 (2000), no. 3-4, 528–532. MR 1823149, DOI 10.1007/BF02676734
  • N. S. Sinjukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, “Nauka”, Moscow, 1979 (Russian). MR 552022
  • N. S. Sinjukov, On the theory of a geodesic mapping of Riemannian spaces, Dokl. Akad. Nauk SSSR 169 (1966), 770–772 (Russian). MR 0202088
  • A. S. Solodovnikov, Projective transformations of Riemannian spaces, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 4(70), 45–116 (Russian). MR 0084826
  • Petar Topalov, Families of metrics geodesically equivalent to the analogs of the Poisson sphere, J. Math. Phys. 41 (2000), no. 11, 7510–7520. MR 1788587, DOI 10.1063/1.1310356
  • H. Weyl, Zur Infinitisimalgeometrie: Einordnung der projektiven und der konformen Auflösung, Nachrichten von der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1921; “Selecta Hermann Weyl”, Birkhäuser Verlag, Basel und Stuttgart, 1956.
  • H. Weyl, Geometrie und Physik, Die Naturwissenschafter 19(1931), 49–58; “Hermann Weyl Gesammelte Abhandlungen”, Band 3, Springer-Verlag, 1968.
  • H. Wu, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291–311. MR 161280
Similar Articles
Bibliographic Information
  • Alexey V. Bolsinov
  • Affiliation: School of Mathematics, Loughborough University, Loughborough, LE11 3TU, United Kingdom
  • MR Author ID: 248231
  • Email: A.Bolsinov@lboro.ac.uk
  • Vladimir S. Matveev
  • Affiliation: Institute of Mathematics, Friedrich-Schiller University Jena, 07737 Jena, Germany
  • MR Author ID: 609466
  • Email: vladimir.matveev@uni-jena.de
  • Received by editor(s): April 16, 2009
  • Published electronically: March 21, 2011
  • © Copyright 2011 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 363 (2011), 4081-4107
  • MSC (2010): Primary 53A20, 53A35, 53A45, 53B20, 53B30, 53C12, 53C21, 53C22, 37J35
  • DOI: https://doi.org/10.1090/S0002-9947-2011-05187-1
  • MathSciNet review: 2792981