On the Cartan matrix of Mackey algebras
HTML articles powered by AMS MathViewer
- by Serge Bouc
- Trans. Amer. Math. Soc. 363 (2011), 4383-4399
- DOI: https://doi.org/10.1090/S0002-9947-2011-05291-8
- Published electronically: March 22, 2011
- PDF | Request permission
Abstract:
Let $k$ be a field of characteristic $p>0$, and let $G$ be a finite group. The first result of this paper is an explicit formula for the determinant of the Cartan matrix of the Mackey algebra $\mu _k(G)$ of $G$ over $k$. The second one is a formula for the rank of the Cartan matrix of the cohomological Mackey algebra $co\mu _k(G)$ of $G$ over $k$, and a characterization of the groups $G$ for which this matrix is nonsingular. The third result is a generalization of this rank formula and characterization to blocks of $co\mu _k(G)$: in particular, if $b$ is a block of $kG$, the Cartan matrix of the corresponding block $co\mu _k(b)$ of $co\mu _k(G)$ is nonsingular if and only if $b$ is nilpotent with cyclic defect groups.References
- David Benson, Modular representation theory: new trends and methods, Lecture Notes in Mathematics, vol. 1081, Springer-Verlag, Berlin, 1984. MR 765858
- D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
- S. Bouc, Résolutions de foncteurs de Mackey, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 31–83 (French, with English summary). MR 1603131, DOI 10.1090/pspum/063/1603131
- Serge Bouc, The $p$-blocks of the Mackey algebra, Algebr. Represent. Theory 6 (2003), no. 5, 515–543. MR 2026725, DOI 10.1023/B:ALGE.0000006493.77655.e5
- Serge Bouc and Jacques Thévenaz, The primitive idempotents of the $p$-permutation ring, J. Algebra 323 (2010), no. 10, 2905–2915. MR 2609181, DOI 10.1016/j.jalgebra.2009.11.036
- R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556–590. MR 4042, DOI 10.2307/1968918
- Michel Broué, On Scott modules and $p$-permutation modules: an approach through the Brauer morphism, Proc. Amer. Math. Soc. 93 (1985), no. 3, 401–408. MR 773988, DOI 10.1090/S0002-9939-1985-0773988-9
- M. Broué, Rickard equivalences and block theory, Groups ’93 Galway/St. Andrews, Vol. 1 (Galway, 1993) London Math. Soc. Lecture Note Ser., vol. 211, Cambridge Univ. Press, Cambridge, 1995, pp. 58–79. MR 1342782, DOI 10.1017/CBO9780511629280.009
- Michel Broué and Lluís Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), no. 2, 117–128. MR 558864, DOI 10.1007/BF01392547
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- M. Nicollerat. Foncteurs de Mackey projectifs. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 2008.
- Jacques Thévenaz and Peter Webb, The structure of Mackey functors, Trans. Amer. Math. Soc. 347 (1995), no. 6, 1865–1961. MR 1261590, DOI 10.1090/S0002-9947-1995-1261590-5
Bibliographic Information
- Serge Bouc
- Affiliation: LAMFA - CNRS UMR 6140, Université de Picardie Jules Verne, 33, rue St Leu, 80039 Amiens, France
- MR Author ID: 207609
- ORCID: 0000-0003-2330-1845
- Email: serge.bouc@u-picardie.fr
- Received by editor(s): October 6, 2009
- Received by editor(s) in revised form: January 2, 2010
- Published electronically: March 22, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 4383-4399
- MSC (2010): Primary 18G05, 20C20, 20J06
- DOI: https://doi.org/10.1090/S0002-9947-2011-05291-8
- MathSciNet review: 2792992