A uniform estimate for positive solutions of semilinear elliptic equations
HTML articles powered by AMS MathViewer
- by G. Fusco, F. Leonetti and C. Pignotti
- Trans. Amer. Math. Soc. 363 (2011), 4285-4307
- DOI: https://doi.org/10.1090/S0002-9947-2011-05356-0
- Published electronically: March 22, 2011
- PDF | Request permission
Abstract:
We consider the semilinear elliptic equation $\Delta u=W’(u)$ with Dirichlet boundary condition in a Lipschitz, possibly unbounded, domain $\Omega \subset \mathbb {R}^n.$ Under suitable assumptions on the potential $W$, we deduce a condition on the size of the domain that implies the existence of a positive solution satisfying a uniform pointwise estimate. Here uniform means that the estimate is independent of $\Omega$.
Under some geometric restrictions on the domain, we extend the analysis to the case of mixed Dirichlet–Neumann boundary conditions.
As an application of our estimate we give a proof of the existence of potentials such that, independent of the choice of $\Omega$ and of the value of $\lambda >0$, the equation $\Delta u=\lambda W’(u)$ has infinitely many positive solutions.
References
- Francesca Alessio, Alessandro Calamai, and Piero Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations, Adv. Differential Equations 12 (2007), no. 4, 361–380. MR 2305872
- N. D. Alikakos and G. Fusco. Entire solutions for equivariant elliptic systems with variational structure. arXiv:0811.0106.
- N. D. Alikakos and G. Fusco. On an elliptic system with symmetric potential possessing two global minima. arXiv:0810.5009.
- Nicholas D. Alikakos and Giorgio Fusco, Entire solutions to nonconvex variational elliptic systems in the presence of a finite symmetry group, Singularities in nonlinear evolution phenomena and applications, CRM Series, vol. 9, Ed. Norm., Pisa, 2009, pp. 1–26. MR 2528696
- H. Berestycki, L. A. Caffarelli, and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50 (1997), no. 11, 1089–1111. MR 1470317, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6
- Xavier Cabré and Joana Terra, Saddle-shaped solutions of bistable diffusion equations in all of $\Bbb R^{2m}$, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 4, 819–843. MR 2538506, DOI 10.4171/JEMS/168
- Ha Dang, Paul C. Fife, and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys. 43 (1992), no. 6, 984–998. MR 1198672, DOI 10.1007/BF00916424
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Peter Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Differential Equations 6 (1981), no. 8, 951–961. MR 619753, DOI 10.1080/03605308108820200
- P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441–467. MR 678562, DOI 10.1137/1024101
- Pierpaolo Omari and Fabio Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations 21 (1996), no. 5-6, 721–733. MR 1391521, DOI 10.1080/03605309608821205
- Giuseppe Savaré, Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations 22 (1997), no. 5-6, 869–899. MR 1452171, DOI 10.1080/03605309708821287
- Guido Stampacchia, Problemi al contorno misti per equazioni del calcolo delle variazioni, Ann. Mat. Pura Appl. (4) 40 (1955), 193–209 (Italian). MR 89992, DOI 10.1007/BF02416533
- Jean Saint Raymond, On the multiplicity of the solutions of the equation $-\Delta u=\lambda \cdot f(u)$, J. Differential Equations 180 (2002), no. 1, 65–88. MR 1890598, DOI 10.1006/jdeq.2001.4057
- J. Shi. Solution Set of Semilinear Elliptic Equations: Global Bifurcation and Exact Multyplicity. World Scientific Publ., 2008.
- Junping Shi, Saddle solutions of the balanced bistable diffusion equation, Comm. Pure Appl. Math. 55 (2002), no. 7, 815–830. MR 1894156, DOI 10.1002/cpa.3027.abs
- Joel Smoller and Arthur Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Rational Mech. Anal. 98 (1987), no. 3, 229–249. MR 867725, DOI 10.1007/BF00251173
Bibliographic Information
- G. Fusco
- Affiliation: Dipartimento di Matematica Pura e Applicata, Università degli Studi di L’Aquila, Via Vetoio, Loc. Coppito, 67010 L’Aquila Italy
- MR Author ID: 70195
- F. Leonetti
- Affiliation: Dipartimento di Matematica Pura e Applicata, Università degli Studi di L’Aquila, Via Vetoio, Loc. Coppito, 67010 L’Aquila Italy
- C. Pignotti
- Affiliation: Dipartimento di Matematica Pura e Applicata, Università degli Studi di L’Aquila, Via Vetoio, Loc. Coppito, 67010 L’Aquila Italy
- Received by editor(s): November 2, 2009
- Published electronically: March 22, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 4285-4307
- MSC (2010): Primary 35J61, 35B09
- DOI: https://doi.org/10.1090/S0002-9947-2011-05356-0
- MathSciNet review: 2792988