A Batalin-Vilkovisky algebra morphism from double loop spaces to free loops
HTML articles powered by AMS MathViewer
- by Luc Menichi
- Trans. Amer. Math. Soc. 363 (2011), 4443-4462
- DOI: https://doi.org/10.1090/S0002-9947-2011-05374-2
- Published electronically: February 8, 2011
- PDF | Request permission
Abstract:
Let $M$ be a compact oriented $d$-dimensional smooth manifold and $X$ a topological space. Chas and Sullivan have defined a structure of Batalin-Vilkovisky algebra on $\mathbb {H}_*(LM):=H_{*+d}(LM)$. Getzler (1994) has defined a structure of Batalin-Vilkovisky algebra on the homology of the pointed double loop space of $X$, $H_*(\Omega ^2 X)$. Let $G$ be a topological monoid with a homotopy inverse. Suppose that $G$ acts on $M$. We define a structure of Batalin-Vilkovisky algebra on $H_*(\Omega ^2BG)\otimes \mathbb {H}_*(M)$ extending the Batalin-Vilkovisky algebra of Getzler on $H_*(\Omega ^2BG)$. We prove that the morphism of graded algebras \[ H_*(\Omega ^2BG)\otimes \mathbb {H}_*(M)\rightarrow \mathbb {H}_*(LM)\] defined by Félix and Thomas (2004), is in fact a morphism of Batalin-Vilkovisky algebras. In particular, if $G=M$ is a connected compact Lie group, we compute the Batalin-Vilkovisky algebra $\mathbb {H}_*(LG;\mathbb {Q})$.References
- M. Chas and D. Sullivan, String topology, preprint: math.GT/991159, 1999.
- D. Chataur and L. Menichi, String topology of classifying spaces, preprint: math.AT/0801.0174v3, 2008.
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Yves Félix and Jean-Claude Thomas, Monoid of self-equivalences and free loop spaces, Proc. Amer. Math. Soc. 132 (2004), no. 1, 305–312. MR 2021275, DOI 10.1090/S0002-9939-03-07018-7
- Gerald Gaudens and Luc Menichi, Batalin-Vilkovisky algebras and the $J$-homomorphism, Topology Appl. 156 (2008), no. 2, 365–374. MR 2475121, DOI 10.1016/j.topol.2008.07.013
- Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288. MR 161898, DOI 10.2307/1970343
- E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265–285. MR 1256989
- Kate Gruher and Paolo Salvatore, Generalized string topology operations, Proc. Lond. Math. Soc. (3) 96 (2008), no. 1, 78–106. MR 2392316, DOI 10.1112/plms/pdm030
- Richard A. Hepworth, String topology for Lie groups, J. Topol. 3 (2010), no. 2, 424–442. MR 2651366, DOI 10.1112/jtopol/jtq012
- P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR 1438546, DOI 10.1007/978-1-4419-8566-8
- Jean-Louis Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque Numéro Hors Série (1985), 257–271 (French). The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837203
- Luc Menichi, String topology for spheres, Comment. Math. Helv. 84 (2009), no. 1, 135–157. With an appendix by Gerald Gaudens and Menichi. MR 2466078, DOI 10.4171/CMH/155
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- Michael Penkava and Albert Schwarz, On some algebraic structures arising in string theory, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, pp. 219–227. MR 1314668
- Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR 666554
- Hirotaka Tamanoi, Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds, Int. Math. Res. Not. , posted on (2006), Art. ID 97193, 23. MR 2211159, DOI 10.1155/IMRN/2006/97193
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- Luc Menichi
- Affiliation: UMR 6093 associée au CNRS, Université d’Angers, Faculté des Sciences, 2 Boulevard Lavoisier, 49045 Angers, France
- Email: luc.menichi@univ-angers.fr
- Received by editor(s): November 10, 2009
- Received by editor(s) in revised form: April 17, 2010
- Published electronically: February 8, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 4443-4462
- MSC (2010): Primary 55P50, 55P35, 55P62
- DOI: https://doi.org/10.1090/S0002-9947-2011-05374-2
- MathSciNet review: 2792995