The image of the map from group cohomology to Galois cohomology
Authors:
M. Tezuka and N. Yagita
Journal:
Trans. Amer. Math. Soc. 363 (2011), 4475-4503
MSC (2010):
Primary 11E72, 12G05; Secondary 55R35
DOI:
https://doi.org/10.1090/S0002-9947-2011-05418-8
Published electronically:
March 14, 2011
MathSciNet review:
2792997
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the image of the natural map from group cohomology to Galois cohomology by using motivic cohomology of classifying spaces.
- Alejandro Adem and R. James Milgram, Cohomology of finite groups, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 2004. MR 2035696
- K. J. Becher, Virtuelle Formen, Mathematisches Institut, Georg-August-Universität Göttingen: Seminars 2003/2004, Universitätsdrucke Göttingen, Göttingen, 2004, pp. 143–150 (German, with English summary). MR 2181575
- D. J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991. Cohomology of groups and modules. MR 1156302
- Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191
- F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485–516, 688 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 455–485. MR 903621, DOI https://doi.org/10.1070/IM1988v030n03ABEH001024
- Fedor Bogomolov, Tihomir Petrov, and Yuri Tschinkel, Unramified cohomology of finite groups of Lie type, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, pp. 55–73. MR 2605165, DOI https://doi.org/10.1007/978-0-8176-4934-0_3
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI https://doi.org/10.2307/1969728
- Alexander S. Merkurjev, Essential dimension, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 299–325. MR 2537108, DOI https://doi.org/10.1090/conm/493/09676
- Jean-Louis Colliot-Thélène, Cycles algébriques de torsion et $K$-théorie algébrique, Arithmetic algebraic geometry (Trento, 1991) Lecture Notes in Math., vol. 1553, Springer, Berlin, 1993, pp. 1–49 (French). MR 1338859, DOI https://doi.org/10.1007/BFb0084728
- Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, American Mathematical Society, Providence, RI, 2003. MR 1999383
- Pierre Guillot, The Chow rings of $G_2$ and Spin(7), J. Reine Angew. Math. 604 (2007), 137–158. MR 2320315, DOI https://doi.org/10.1515/CRELLE.2007.021
- Pierre Guillot, Geometric methods for cohomological invariants, Doc. Math. 12 (2007), 521–545. MR 2365912
- Bruno Kahn, Classes de Stiefel-Whitney de formes quadratiques et de représentations galoisiennes réelles, Invent. Math. 78 (1984), no. 2, 223–256 (French). MR 767193, DOI https://doi.org/10.1007/BF01388595
- M. Kameko. Poincaré series of cotorsion products. Preprint (2005).
- Masaki Kameko and Mamoru Mimura, Mùi invariants and Milnor operations, Proceedings of the School and Conference in Algebraic Topology, Geom. Topol. Monogr., vol. 11, Geom. Topol. Publ., Coventry, 2007, pp. 107–140. MR 2402803
- Masaki Kameko and Nobuaki Yagita, The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups ${\rm PU}(p)$ and exceptional Lie groups, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2265–2284. MR 2373313, DOI https://doi.org/10.1090/S0002-9947-07-04425-X
- Akira Kono and Nobuaki Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), no. 2, 781–798. MR 1139493, DOI https://doi.org/10.1090/S0002-9947-1993-1139493-4
- Ib Madsen and R. James Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, No. 92, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR 548575
- John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844, DOI https://doi.org/10.1007/BF01425486
- Luis Alberto Molina Rojas and Angelo Vistoli, On the Chow rings of classifying spaces for classical groups, Rend. Sem. Mat. Univ. Padova 116 (2006), 271–298. MR 2287351
- D. Orlov, A. Vishik, and V. Voevodsky, An exact sequence for $K^M_\ast /2$ with applications to quadratic forms, Ann. of Math. (2) 165 (2007), no. 1, 1–13. MR 2276765, DOI https://doi.org/10.4007/annals.2007.165.1
- K. H. Paranjape, Some spectral sequences for filtered complexes and applications, J. Algebra 186 (1996), no. 3, 793–806. MR 1424593, DOI https://doi.org/10.1006/jabr.1996.0395
- Emmanuel Peyre, Unramified cohomology of degree 3 and Noether’s problem, Invent. Math. 171 (2008), no. 1, 191–225. MR 2358059, DOI https://doi.org/10.1007/s00222-007-0080-z
- Daniel Quillen, The ${\rm mod}$ $2$ cohomology rings of extra-special $2$-groups and the spinor groups, Math. Ann. 194 (1971), 197–212. MR 290401, DOI https://doi.org/10.1007/BF01350050
- Z. Reichstein, On the notion of essential dimension for algebraic groups, Transform. Groups 5 (2000), no. 3, 265–304. MR 1780933, DOI https://doi.org/10.1007/BF01679716
- M. Rost. On the basic correspondence of a splitting variety. Preprint (2006)
- David J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math. 77 (1984), no. 1, 71–84. MR 751131, DOI https://doi.org/10.1007/BF01389135
- Andrei Suslin and Seva Joukhovitski, Norm varieties, J. Pure Appl. Algebra 206 (2006), no. 1-2, 245–276. MR 2220090, DOI https://doi.org/10.1016/j.jpaa.2005.12.012
- Michio Suzuki, Group theory. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. MR 815926
- Michishige Tezuka and Nobuaki Yagita, The varieties of the mod $p$ cohomology rings of extra special $p$-groups for an odd prime $p$, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 449–459. MR 720796, DOI https://doi.org/10.1017/S0305004100000840
- Hirosi Toda, Cohomology ${\rm mod}$ $3$ of the classifying space $BF_{4}$ of the exceptional group ${\bf F}_{4}$, J. Math. Kyoto Univ. 13 (1973), 97–115. MR 321086, DOI https://doi.org/10.1215/kjm/1250523438
- Burt Totaro, The Chow ring of a classifying space, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281. MR 1743244, DOI https://doi.org/10.1090/pspum/067/1743244
- Angelo Vistoli, On the cohomology and the Chow ring of the classifying space of ${\rm PGL}_p$, J. Reine Angew. Math. 610 (2007), 181–227. MR 2359886, DOI https://doi.org/10.1515/CRELLE.2007.071
- Charles Vial, Operations in Milnor $K$-theory, J. Pure Appl. Algebra 213 (2009), no. 7, 1325–1345. MR 2497581, DOI https://doi.org/10.1016/j.jpaa.2008.12.001
- V. Voevodsky. The Milnor conjecture. www. math. uiuc. edu/K-theory/0170 (1996).
- Vladimir Voevodsky, Motivic cohomology with ${\bf Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59–104. MR 2031199, DOI https://doi.org/10.1007/s10240-003-0010-6
- V. Voevodsky, Voevodsky’s Seattle lectures: $K$-theory and motivic cohomology, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 283–303. Notes by C. Weibel. MR 1743245, DOI https://doi.org/10.1090/pspum/067/1743245
- Vladimir Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1–57. MR 2031198, DOI https://doi.org/10.1007/s10240-003-0009-z
- V. Voevodsky. On motivic cohomology with $\mathbb {Z}/l$-coefficients. www. math. uiuc. edu/K-theory/0631 (2003).
- V. Voevodsky. Motivic Eilenberg MacLane spces. www. math. uiuc. edu/K-theory/0864 (2007).
- Nobuaki Yagita, Applications of Atiyah-Hirzebruch spectral sequences for motivic cobordism, Proc. London Math. Soc. (3) 90 (2005), no. 3, 783–816. MR 2137831, DOI https://doi.org/10.1112/S0024611504015084
- Nobuaki Yagita, Coniveau filtration of cohomology of groups, Proc. Lond. Math. Soc. (3) 101 (2010), no. 1, 179–206. MR 2661245, DOI https://doi.org/10.1112/plms/pdp059
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11E72, 12G05, 55R35
Retrieve articles in all journals with MSC (2010): 11E72, 12G05, 55R35
Additional Information
M. Tezuka
Affiliation:
Department of Mathematics, Faculty of Science, Ryukyu University, Okinawa, Japan
Email:
tez@sci.u-ryukyu.ac.jp
N. Yagita
Affiliation:
Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
MR Author ID:
185110
Email:
yagita@mx.ibaraki.ac.jp
Keywords:
Cohomolgical invariant,
classifying spaces,
motivic cohomology
Received by editor(s):
April 22, 2009
Received by editor(s) in revised form:
February 11, 2010, and June 3, 2010
Published electronically:
March 14, 2011
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.