On the Weil-étale cohomology of number fields
HTML articles powered by AMS MathViewer
- by Baptiste Morin
- Trans. Amer. Math. Soc. 363 (2011), 4877-4927
- DOI: https://doi.org/10.1090/S0002-9947-2011-05124-X
- Published electronically: April 14, 2011
- PDF | Request permission
Abstract:
We give a direct description of the category of sheaves on Lichtenbaum’s Weil-étale site of a number ring. Then we apply this result to define a spectral sequence relating Weil-étale cohomology to Artin-Verdier étale cohomology. Finally we construct complexes of étale sheaves computing the expected Weil-étale cohomology.References
- M. Artin, Grothendieck Topologies. Notes on a Seminar, Harvard University, 1962.
- Mel Bienenfeld, An étale cohomology duality theorem for number fields with a real embedding, Trans. Amer. Math. Soc. 303 (1987), no. 1, 71–96. MR 896008, DOI 10.1090/S0002-9947-1987-0896008-0
- Christopher Deninger, An extension of Artin-Verdier duality to nontorsion sheaves, J. Reine Angew. Math. 366 (1986), 18–31. MR 833011, DOI 10.1515/crll.1986.366.18
- M. Flach, Cohomology of topological groups with applications to the Weil group, Compos. Math. 144 (2008), no. 3, 633–656. MR 2422342, DOI 10.1112/S0010437X07003338
- Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653
- Stephen Lichtenbaum, The Weil-étale topology for number rings, Ann. of Math. (2) 170 (2009), no. 2, 657–683. MR 2552104, DOI 10.4007/annals.2009.170.657
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- B. Morin, Sur le topos Weil-étale d’un corps de nombres. Thesis, 2008.
- T. Zink, Etale cohomology and duality in number fields. Haberland, Galois cohomology, Berlin, 1978, Appendix 2.
Bibliographic Information
- Baptiste Morin
- Affiliation: Department of Mathematics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125
- Received by editor(s): February 25, 2009
- Received by editor(s) in revised form: January 6, 2010
- Published electronically: April 14, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 4877-4927
- MSC (2000): Primary 14F20; Secondary 14G10
- DOI: https://doi.org/10.1090/S0002-9947-2011-05124-X
- MathSciNet review: 2806695