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WEAK EXPECTATIONS AND THE INJECTIVE ENVELOPE

VERN I. PAULSEN

Abstract. Given a unital C∗-subalgebra A ⊆ B(H), we study the set of all
possible images of the injective envelope I(A) of A that are contained in B(H)

and their position relative to the double commutant of the algebra in order
to develop more information about the existence or non-existence of weak
expectations. We study the set of all elements of B(H) that are fixed by all
completely positive maps that fix A. We also introduce a new category, such
that the injective envelope of A in the new category is always contained in the
double commutant of A. We study the relationship between these two injective
envelopes and the existence of weak expectations.

1. Introduction and preliminaries

A unital C∗-subalgebra A ⊆ B(H) of the bounded linear operators on a Hilbert
space is said to have a weak expectation provided that there is a completely positive
map from B(H) into the double commutant of A, denoted A′′, that is the identity
on A. A unital C∗-algebra A is said to have the weak expectation property (WEP)
provided that for every faithful *-representation π : A → B(H) of A onto a Hilbert
space H, the C∗-subalgebra π(A) has a weak expectation. If we let πu denote the
universal representation of A, so that the double commutant πu(A)′′ is identified
with the double dual, A∗∗, then it is known that A has the WEP if and only if this
representation has a weak expectation.

Blackadar [2] observed that A has a weak expectation if and only if A′′ contains
an operator system that is completely isometrically isomorphic to I(A), the injective
envelope of A, via a map that fixes A. Thus, the WEP is equivalent to the existence
of a copy of I(A) inside A∗∗.

However, in general, B(H) will contain many operator systems that contain A
and are completely isometrically isomorphic to I(A). For a weak expectation to
exist we only need one of these copies of the injective envelope to be contained in
the double commutant. In general, a C∗-subalgebra A ⊆ B(H), which has a weak
expectation, will also have some copies of I(A) that are not contained in A′′. We
construct such an algebra below.

For this reason, given a unital C∗-subalgebra A ⊆ B(H), we are led to a more
detailed study of the collection of all possible “copies” of I(A) that lie inside B(H),
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the relationships between these various copies of the injective envelopes and the
collection of projections onto these copies. One object that will play a role in our
study is the intersection of all possible copies of I(A).

Another tool that we shall use is a new type of “envelope” of A that is always
a subset of A′′, but which is, generally, only injective in a sense relative to A′′. It
turns out that A has a weak expectation if and only if this new envelope is injective
in the usual sense.

In section 2, we further develop some of Hamana’s ideas. We introduce and
study this new type of envelope and simultaneously obtain additional information
about the set of all projections onto copies of the injective envelope. This is the set
that Hamana [6] calls the minimal A-projections. Section 3 applies these ideas to
the study of weak expectations. Section 4 is devoted to developing the properties of
the set that is the intersection of all copies of the injective envelope. We prove that
this set is simultaneously a reflexive cover of A and a new type of order completion
of A. We compute this set for a few examples.

We close this section by justifying a few of the comments above. First, since
the entire motivation for this study relies on Blackadar’s result [2], we provide an
independent argument which also serves as an introduction to many of Hamana’s
ideas.

To obtain Blackadar’s result, first assume that A ⊆ B(H) possesses a weak
expectation. Note that since B(H) is injective, the identity map on A extends to
a map of I(A) into B(H). Composing this latter map with the weak expectation
yields a completely positive map of I(A) into A′′ that fixes A. The map of I(A)
into A′′ must be a complete isometry on the injective envelope, by the fact [6]
that the injective envelope is an essential extension of A. Conversely, if I(A) can
be embedded completely isometrically isomorphically into A′′, then since I(A) is
injective, we may extend the identity map on A to a completely positive map of
B(H) to I(A). Composing this extension with the inclusion of I(A) into A′′ yields
the desired weak expectation.

Next we would like to point out that the fact that the image of one represen-
tation π : A → B(H) has a weak expectation is not enough to guarantee that
A has the weak expectation property. In fact, every C∗-algebra has at least one
representation that has a weak expectation. The double commutant of the reduced
atomic representation is always injective, and hence this representation possesses a
weak expectation.

Next we give an example to show that it is possible for a C∗-algebra to have
a weak expectation, while some copies of the injective envelope are not contained
inside the double commutant of the algebra. To this end, let A be a C∗-algebra
with the WEP that is not injective and take the universal representation of the
C∗-algebra, I(A). Then πu(I(A)) is a copy of the injective envelope of πu(A), but
we claim that this copy of the injective envelope is not contained in πu(A)′′. If
not, then we would have that πu(I(A)) ⊆ πu(A)′′. But this implies that I(A)∗∗ �
πu(I(A))′′ ⊆ πu(A)′′ � A∗∗ and this inclusion of I(A)∗∗ ⊆ A∗∗ is weak*-continuous
and the identity on A. From this it follows that A = I(A), contradicting the choice
of A. Since A had the WEP, πu(A) is a C∗-algebra with a weak expectation and so
some copy of its injective envelope is contained in πu(A)′′, but πu(I(A)) � I(πu(A))
is a copy of its injective envelope that is not contained in the double commutant.

Finally, although our main interest is in the case of C∗-algebras, many of the
ideas extend to the case of operator spaces.
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The definition of the injective envelope of a C∗-algebra has been extended to
general operator spaces by Ruan [11] and has been shown to enjoy similar proper-
ties to those proven by Hamana, namely, that it is a rigid, essential and injective
extension. Pisier [10] defined an operator space V to have the WEP provided that
the identity on V extends to a completely contractive map of Ruan’s injective en-
velope I(V ) into V ∗∗. Thus, a finite dimensional operator space has the WEP if
and only if it is injective. We prove below that Pisier’s definition, as in the case of
C∗-algebras, is equivalent to one involving weak expectations.

Definition 1.1. Let V ⊆ B(H) be an operator space. We say that V has a weak
expectation if there is a completely contractive map from B(H) into the weak*-
closure of V, that is the identity on V. We define an abstract operator space V to
have the weak expectation property (WEP) provided that there exists a completely
isometric embedding of the injective envelope of V , I(V ) into V ∗∗ that is the identity
on V .

The equivalence of the WEP to every inclusion possessing a weak expectation is
a little more subtle for operator spaces, so we prove this below.

Proposition 1.2. Let V be an operator space. Then V has the WEP if and only
if for every Hilbert space, H, and for every complete isometry, ϕ : V → B(H), the
subspace ϕ(V ) ⊆ B(H) has a weak expectation.

Proof. Assume that V has the WEP and let ϕ : V → B(H) be a complete isometry.
Let W denote the weak*-closure of ϕ(V ), so that by [3, Lemmas 1.4.6 and 1.4.8] W
has a pre-dual and ϕ extends to a complete contraction of V ∗∗ into W . Composing
this map with the embedding of I(V ) into V ∗∗ yields a completely contractive
mapping of I(V ) into W that restricts to a complete isometry on V . Since I(V ) is
an essential extension of V , this map must also be a complete isometry on I(V ).

Conversely, assume that every completely isometric embedding of V into B(H)
possesses a weak expectation. By [3, Lemma 1.4.7], there exists a weak*-continuous
completely isometric embedding of V ∗∗ onto a weak*-closed subspace of B(H), for
some H. Taking any weak expectation for this embedding and composing it with
any completely isometric inclusion of I(V ) into B(H), yields the desired embedding
of I(V ) into V ∗∗. �

We remark that the above proof applied to the case of C∗-algebras shows the
earlier equivalence of the two characterizations of WEP.

2. Minimal projections and W -injectivity

In this section we take a closer look at the ideas contained in Hamana’s con-
structions [6, 7] of the injective envelope and prove a number of facts that are
consequences of these ideas, but that seem to have not been observed earlier. In
order to better understand the weak expectations it is useful to examine the extent
that Hamana’s constructions can be carried out in the setting where one has oper-
ator spaces V ⊆ W with W a dual operator space that is not necessarily injective.

Definition 2.1. Let W be an operator space. We let W denote the category
whose objects are operator subspaces of W and given two operator subspaces X,Y
of W we let the maps from X to Y , denoted by M(X,Y ), be the set of completely
contractive maps from φ : W → W such that φ(X) ⊆ Y . We define an object Y to
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be injective in W or more shortly, W -injective provided that whenever X1 ⊂ X2

are operator subspaces of W and φ1 ∈ M(X1, Y ), then there exists φ2 ∈ M(X2, Y )
such that the restriction of φ2 toX1 is φ1. We say thatX and Y areW -isomorphic
provided that there exists φ ∈ M(X,Y ) and ψ ∈ M(Y,X) such that ψ ◦ φ is the
identity on X and φ ◦ ψ is the identity on Y .

It is not hard to see that Y is W -injective if and only if there exists a completely
contractive idempotent from W onto Y . So, for example, W is always injective in
W, even though it need not be an injective operator space in the traditional sense.
If W is an injective operator space in the usual sense, then it follows that every
W -injective operator space is also injective in the usual sense. If X and Y are
W -isomorphic, then they are completely isometrically isomorphic, but the converse
is not apparent.

We now show that when W is a dual space, then many of Hamana’s results
about minimal projections and injective envelopes hold and allow one to construct
an injective envelope inW with analogous properties to the usual injective envelope.

We begin with the relevant definitions.

Definition 2.2. Let V ⊆ W be operator spaces. We call a completely contractive
map φ : W → W a V -map provided that φ(v) = v for every v ∈ V . We say that
X is a W -essential extension of V provided that V ⊆ X ⊆ W and whenever
φ : W → W is a V -map, then there exists a V -map ψ such that ψ ◦ φ(x) = x
for every x ∈ X. We say that X is a W -rigid extension of V provided that
V ⊆ X ⊆ W and the only V -map in M(X,X) is the identity map on X.

When W is injective in the usual sense, then X is a W -rigid (respectively, W -
essential) extension of V if and only if it is a rigid (respectively, essential) extension
of V in the usual sense, that is, if and only if the only completely contractive map
from X to itself that fixes V is the identity on X (respectively, any completely
contractive map on X that is a complete isometry on V is a complete isometry on
X).

Given a V -map φ : W → W it induces a seminorm on W by setting pφ(w) =
‖φ(w)‖. The set of such seminorms is partially ordered by pφ ≤ pψ if and only if
pφ(w) ≤ pψ(w) for every w ∈ W.

Now assume that W is a dual Banach space, so that W is endowed with a weak*-
topology. Given any chain of such seminorms, then by taking a point-weak*-limit
point of the set of maps, we obtain a new V -map ψ such that pψ is a lower bound
for the chain. Thus, by Zorn’s lemma, there exist minimal such seminorms.

To use the above argument to prove the existence of minimal seminorms, one
only needs that M(W,W ) is endowed with a topology that makes it a compact set
and such that for every w ∈ W the map φ → ‖φ(w)‖ is lower semicontinuous.

Definition 2.3. We call an operator space W admissible provided that for every
operator subspace V and every V -map φ there exists a V -map ψ such that pψ ≤ pφ
with pψ a minimal seminorm.

Thus, by our above remarks, every operator space W that has an appropriate
topology on M(W,W ) is admissible and in particular every operator space that is
a dual Banach space is admissable.

Theorem 2.4. Let V ⊆ W be operator spaces with W admissible and let φ :
W → W be a V -map such that the seminorm pφ is minimal among this family of
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seminorms. Then φ is a completely contractive projection and the range of φ,R(φ)
is a W -rigid, W -injective extension of V .

Proof. Set φ(2) = φ ◦ φ and inductively, φ(n+1) = φ ◦ φ(n). Define ψn = φ+···+φ(n)

n .
Since pψn

≤ pφ we have equality of these seminorms. But

ψn(x− φ(x)) =
φ(x)− φ(n+1)(x)

n
,

which tends to 0 in norm. Hence, 0 = φ(x − φ(x)) and so it follows that φ is
idempotent and so the range of φ is W -injective.

Letting Y = R(φ), it remains to show that Y is a W -rigid extension of V . Let
ψ ∈ M(Y, Y ) be a V -map. Since pψ◦φ ≤ pφ we again have equality. Thus, by the
above, ψ ◦ φ must be an idempotent map. Let y ∈ Y . Then

‖y − ψ(y)‖ = ‖φ(y − ψ ◦ φ(y))‖ = ‖ψ ◦ φ(y − ψ ◦ φ(y)‖ = 0.

Hence, ψ is the identity on Y and so Y is a W -rigid extension of V . �
For all of the following results, we assume that W is an admissible operator space

and that V ⊂ W .

Lemma 2.5. Let W be an admissible operator space, with V ⊂ W . Let Y be a
W -rigid and W -injective extension of V . Let E : W → Y be a V -map and let ψ be
any V -map. If pψ ≤ pE, then E ◦ ψ = E and ker(ψ) = ker(E).

Proof. Since Y is a W -rigid extension of V , we have that E(y) = y for every y ∈ Y,
and hence, E ◦ E = E. For y ∈ Y we have that E ◦ ψ(y) = y by rigidity. For
k ∈ ker(E) we have that ‖ψ(k)‖ ≤ ‖E(k)‖ = 0 and so ker(E) ⊆ ker(ψ). Since
every element x ∈ W can be written as x = y + k for y ∈ Y and k ∈ ker(E), we
have that E ◦ ψ(x) = y = E(x) and the first claim follows.

If x ∈ ker(ψ), then E(x) = E ◦ ψ(x) = 0 and so ker(ψ) ⊆ ker(E). �
Proposition 2.6. Let Y be a W -rigid and W -injective extension of V and let
E : W → Y be a V -map. Then pE is a minimal V -seminorm.

Proof. Suppose not. Then we may choose a V -map φ such that pφ ≤ pE with
‖φ(x)‖ < ‖E(x)‖ for some x. But by the above, ‖E(x)‖ = ‖E ◦ φ(x)‖ ≤ ‖φ(x)‖, a
contradiction. �
Proposition 2.7. Let V ⊆ W with W admissible and let Y be a W -rigid and
W -injective extension of V . Let E : W → Y be a V -map and let φ be any V -map.
Then ker(φ ◦ E) = ker(E), E ◦ φ ◦ E = E and φ ◦ E and E ◦ φ are completely
contractive projections onto W -rigid and W -injective extensions of V .

Proof. Since φ is a contraction, pφ◦E ≤ pE and so we may apply Lemma 2.5 with
φ ◦ E = ψ to obtain that E ◦ φ ◦ E = E and that ker(φ ◦ E) = ker(E). Hence,
(φ ◦ E) ◦ (φ ◦ E) = φ ◦ E and (E ◦ φ) ◦ (E ◦ φ) = E ◦ φ and so these maps are
completely contractive projections, as claimed. Taking φ = idW we have that E is
also a completely contractive projection.

It remains to show thatR(φ◦E) andR(E◦φ) areW -rigid, W -injective extensions
of V. By Proposition 2.6, pE is a minimal V -seminorm and hence pφ◦E is also a
minimal V -seminorm and hence by Theorem 2.4, R(φ ◦ E) is a W -rigid and W -
injective extension of V . Also, since E ◦ φ ◦ E = E, we have that R(E ◦ φ) =
R(E) = Y, which is a W -rigid and W -injective extension of V . �
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Corollary 2.8. Let V ⊆ W with W admissible and let φ : W → W be a V -map
whose range is contained in a W -injective, W -rigid extension Y of V . Then φ is a
projection onto Y .

Proof. Let E be a projection onto Y . Then E ◦φ = φ. By the above result E ◦φ is
a projection onto a W -injective subspace of Y which, by the W -rigidity of Y , must
be all of Y . �

Recall that Hamana [6] introduces a partial order on projections by defining
E 
 F if and only if E ◦ F = F ◦ E = E. Note that this is equivalent to requiring
that E ◦ F ◦ E = F ◦ E ◦ F = E. To see this note that the first set of equalities
clearly implies the second set. If the second set of equalities holds, then F ◦ E =
F ◦ (E ◦ F ◦ E) = (F ◦ E ◦ F ) ◦ E = E2 = E and similarly, E ◦ F = E.

Theorem 2.9. Let V ⊆ W with W admissible and let E : W → W be a V -map.
Then the following are equivalent:

i) pE is a minimal V -seminorm,
ii) E is a projection onto a W -injective, W -rigid extension of V ,
iii) E is minimal in the partial order on V -projections.

Moreover, if E1, E2 are two such minimal V -projections, then R(E1) and R(E2)
are W -isomorphic.

Proof. The proof that i) implies ii) is Theorem 2.4 and that ii) implies i) is Propo-
sition 2.6. Assume ii) and let F 
 E. Then, by Corollary 2.8, F is also a projection
onto Y . Hence, E = F ◦ E = F and so E is minimal.

Next, assuming iii), let pF ≤ pE be a minimal V -seminorm. Then pE◦F is also
a minimal V -seminorm and so F and E ◦ F are projections onto W -injective, W -
rigid extensions of V . Hence by another application of Corollary 2.8, E ◦ F ◦ E is
another projection onto aW -injective, W -rigid extension of V . But E◦(E◦F ◦E) =
E ◦F ◦E = (E ◦F ◦E) ◦E and hence E = E ◦F ◦E. Thus, E is a projection onto
a W -injective, W -rigid extension of V .

Finally, if E1 and E2 are minimal V -projections, with ranges Y1 and Y2, respec-
tively, then E2 ◦ E1 defines a completely isometric W -isomorphism of Y1 onto Y2,
with inverse E1 ◦ E2. �

Thus, we see that all W -injective, W -rigid extensions of V are W -isomorphic,
provided W is admissible.

Definition 2.10. Let W be an admissible operator space and V a subspace. We
call any V -map E : W → W that satisfies the equivalent properties of Theorem 2.9
a minimal V -projection (with respect to W ) and let EW (V ) denote the set of
all minimal V -projections. We let IW (V ) denote the W -isomorphism class of the
range of a minimal V -projection and we call this operator space the W -injective
envelope of V . Any operator subspace of W that is the range of a minimal
V -projection will be called a copy of IW (V ).

When V = A is a unital C∗-algebra andW = A′′, then any minimal A-projection
E is also a unital, completely positive map and, hence, IA′′(A) will be an A′′-
injective C∗-algebra when endowed with the Choi-Effros product, E(x) ◦ E(y) =
E(E(x)E(y)).

When W is injective, then IW (V ) = I(V ), the usual injective envelope.
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The following result shows that, in general, EW (V ) can be quite large and ex-
plains some of its algebraic structure. Note that the set of V -maps, which we shall
denote by MW (V ), is a semigroup under composition with the identity map on W
serving as an identity.

Proposition 2.11. Let W be an admissible operator space and let V be an operator
subspace. Then EW (V ) is the unique minimal, non-empty, two-sided ideal in the
semigroup MW (V ).

Proof. Given any V -map φ and E ∈ EW (V ), we have that φ ◦ E ∈ EW (V ) and
E ◦ φ ∈ EW (V ), by Proposition 2.7 and Theorem 2.9. Thus, EW (V ) is a two-sided
ideal in MW (V ).

Given any non-empty two-sided ideal J in MW (V ), let φ ∈ J , and let E ∈
EW (V ). Then by Proposition 2.7, E = E ◦ φ ◦E ∈ J , and hence, EW (V ) ⊆ J . �

The following result identifies the minimal left ideals. Given any φ ∈ MW (V ),
we let Lφ = {ψ ◦ φ : ψ ∈ MW (V )} denote the left ideal generated by φ.

Theorem 2.12. Let W be an admissible operator space, let V be an operator
subspace, and let E ∈ EW (V ). Then LE = {F ∈ EW (V ) : pF = pE} = {F ∈
EW (V ) : ker(F ) = ker(E)}, LE is a convex set and a minimal non-empty left
ideal in the semigroup of V -maps. Moreover, every minimal, non-empty left ideal
in MW (V ) is equal to LE for some E ∈ EW (V ). Finally, if F1, F2 ∈ LE , then
F1 + F2 = F1 ◦ F2 + F2 ◦ F1.

Proof. First we show that the three sets are equal. If φ◦E ∈ LE , then ‖φ◦E(w)‖ ≤
‖E(w)‖, so by minimality, pφ◦E = pE, so the first set is contained in the second. If
pF = pE, then, clearly, ker(F ) = ker(E), so the second set is contained in the third.
If ker(F ) = ker(E), then since E(w − E(w)) = 0, we have that F (w) = F ◦ E(w),
so that F = F ◦ E ∈ LE, and all three sets are equal.

Let F1, F2 ∈ LE and let 0 ≤ t ≤ 1. Then for any w ∈ W, we have that
‖tF1(w) + (1 − t)F2(w)‖ ≤ ‖E(w)‖. Since pE is a minimal V -seminorm, it follows
that ptF1+(1−t)F2

= pE and hence, tF1 + (1− t)F2 ∈ LE . Thus, LE is convex.
Now, let J ⊆ LE be any non-empty left ideal, and let φ ∈ J , so that E ◦φ ∈ J .

Since φ ∈ LE, there exists ψ ∈ MW (V ) such that φ = ψ ◦ E and, hence, E ◦ φ =
E ◦ ψ ◦E = E by Proposition 2.7. Thus, E ∈ J and so, LE ⊆ J . This proves that
LE is a minimal, non-empty left ideal.

Finally, since (F1+F2)/2 ∈ LE , we have that (F1+F2)/2 = (F1+F2)/2 ◦ (F1+
F2)/2 = 1/4(F1+F1◦F2+F2◦F1+F2), which implies F1+F2 = F1◦F2+F2◦F1. �
Corollary 2.13. Let W be an admissible operator space and let V be a subspace.
Then EW (V ) is the disjoint union of the minimal left ideals in MW (V ).

Proof. Every minimal non-empty left ideal is of the form LE for some E ∈ EW (V ),
and LE ⊆ MW (V ) and any two such ideals are either disjoint or equal. �

Similar results hold for the right ideal, RE , generated by E ∈ EW (V ). We record
some of them without proof.

Proposition 2.14. Let W be an admissible operator space, let V be an operator
subspace and let E ∈ EW (V ). Then RE = {F ∈ EW (V ) : R(F ) = R(E)} and RE is
a convex set and a minimal right ideal. Moreover, every minimal, non-empty right
ideal is equal to RE for some E ∈ EW (V ) and EW (V ) is the disjoint union of all
minimal right ideals.
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The following result gives a way to obtain copies of IW (V ) and clarifies the
relationship of IW (V ) with the usual injective envelope.

Theorem 2.15. Let V ⊆ W ⊆ B(H) with W admissible and let φ : W → W be a
minimal V -projection, so that Y = R(φ) is a copy of IW (V ). Then there is a copy
S ⊆ B(H) of I(Y ) and a completely contractive projection E : B(H) → S that is
an extension of φ to B(H) such that Y = W ∩ S.

Proof. Among all extensions of φ to B(H) choose one, say E, such that the induced
seminorm on B(H) is minimal among the set of all such seminorms. The existence
of such a minimal seminorm is guaranteed by Zorn’s lemma, since every chain
has a lower bound given by taking a point weak*-limit point, as above. Setting

ψn = E+E◦E+...+E(n)

n , we have that ψn still extends φ and produces a smaller
seminorm on B(H) and, consequently, must be equal to the seminorm induced by
E. Apply to x− E(x), as before, to deduce that E is idempotent.

Hence E is a projection onto some (necessarily) injective operator space S and
from this it follows that φ is the projection onto W ∩ S.

We now prove that S is a rigid extension of Y. To this end suppose that γ : S → S
is a completely contractive map that fixes Y . Then γ ◦E is another extension of φ
with pγ◦E ≤ pE and hence we must have equality of these two seminorms. Hence
γ ◦ E must also be idempotent. Arguing as in the last line of Theorem 2.4, we
obtain that ‖s− γ(s)‖ = 0 and so γ is the identity on S.

Since S is injective and a rigid extension of Y we have that S is completely
isometrically isomorphic to I(Y ) via a map that fixes Y . That is, S is one of the
copies of I(Y ) in B(H). �

If S is an arbitrary copy of I(Y ) in B(H), then it might not be the case that
W ∩ S = Y or that the projection E onto S satisfies E(W ) ⊆ W, but we do not
have a concrete example where these fail.

Note that since V ⊆ Y , we will have that any copy of I(Y ) will contain a copy of
I(V ). Moreover, since any two copies Y1, Y2 of IW (V ) are W -isomorphic, they are
completely isometrically isomorphic via a map that fixes V and hence, any copies
of I(Y1) and I(Y2) in B(H) will be completely isometrically isomorphic via a map
that fixes V. But we do not know if I(V ) = I(Y ), or equivalently, if any completely
contractive map ψ : I(Y ) → I(Y ) that fixes V is necessarily the identity map.

Definition 2.16. Let V ⊆ W with W admissible. If V ⊆ Y ⊆ W is any copy of
IW (V ), then we set IW (V ) = I(Y ) and recall that this operator space is uniquely
determined up to a completely isometric isomorphism that fixes V and is indepen-
dent of Y.

The following gives a characterization of IW (V ) in the main case of interest.

Proposition 2.17. Let V ⊆ W ⊆ B(H), with W admissible and let E : B(H) →
B(H) be a V -map. If pE is minimal among all V -seminorms on B(H) such that
E(W ) ⊆ W, then E(B(H)) is a copy of IW (V ) and E(W ) is a copy of IW (V ).

Proof. If pE is minimal in the above sense, then arguing as in the proof of Theo-
rem 2.4, we see that E is idempotent and hence a V -projection. Let φ : W → W
be the restriction of E to W.

We claim that pφ is a minimal V -seminorm on W . If not, then we have that
ψ : W → W is a V -map such that pψ ≤ pφ. Then we have that ‖ψ(x − φ(x))‖ ≤
‖φ(x− φ(x))‖ = 0, and hence, ψ(x) = ψ ◦ φ(x), for any x ∈ W.
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Let F : B(H) → B(H) be any completely contractive extension of ψ. Then
pF◦E ≤ pE and hence they are equal. Thus, for any x ∈ W, we have ‖ψ(x)‖ =
‖ψ ◦φ(x)‖ = ‖F ◦E(x)‖ = ‖E(x)‖ = ‖φ(x)‖ and so φ is a minimal V -seminorm on
W .

Hence, φ(W ) = E(W ) is a copy of IW (V ). Now, in Theorem 2.11, it was shown
that if F is any map that extends φ and has minimal seminorm on B(H) among all
maps that extend φ, then F is a projection onto a copy of the injective envelope of
φ(W ). But, by the choice of E, it is minimal among all maps that extend φ = E |W .
Hence, E(B(H)) is a copy of the injective envelope of φ(W ) and hence is a copy of
IW (V ). �

Remark 2.18. In Proposition 2.17, we are not asserting that such a minimal pE
exists, only that when it does it has the asserted properties. However, if V ⊆ W ⊆
B(H) and W is weak*-closed, then a V -map E : B(H) → B(H) such that pE is
minimal among all V -seminorms on B(H) with E(W ) ⊆ W always exists. This can
be seen by invoking Zorn’s lemma. In this case any chain {Eλ} will have a lower
bound as can be seen by taking a weak*-limit point of the chain and noting that
the limiting map E will still satisfy E(W ) ⊆ W.

Problem 2.19. Let V ⊆ W ⊆ B(H) with W admissible. Clearly, I(V ) ⊆ IW (V ).
Are they always equal? Is it possible to give necessary and sufficient conditions
that guarantee equality?

The following shows why we believe that the above problem is important.

Definition 2.20. A C∗-algebra B is said to be QWEP (for quotient of WEP) if
there is a C∗-algebra A with WEP and a *-homomorphism from A onto B.

Problem 2.21. Does a C∗-algebra B ⊆ B(H) have QWEP if and only if IB
′′
(B) =

I(B)?

In the next section we shall relate these quantities to questions about weak
expectations.

3. Weak expectations and minimal projections

We now turn our attention to some applications of the ideas of the previous
section to the existence of weak expectations.

Definition 3.1. Given V ⊆ B(H), an operator space, we shall let E(V ) = EB(H)(V )
denote the set of minimal V -projections on B(H). Given E ∈ E(V ), we call R(E)
a copy of I(V ) and we denote the set of all operator spaces contained in B(H)
that are copies of I(V ) by CI(V ).

Note that, in general, for each S ∈ CI(V ), there could be many projections,
E ∈ E(V ) with S = R(E). We will often use the following observation of Hamana
[6], that if E0, E1 ∈ E(V ), then E0 ◦E1 ∈ E(V ) since it must also define a minimal
V -seminorm. Hence, R(E0 ◦ E1) = R(E0) and E0 : R(E1) → R(E0) is a complete
isomorphism.

Given a concrete operator space V ⊆ B(H), we shall let V †† denote the weak*-
closure of V in B(H), so that in the case that V = A is a C∗-subalgebra, we have
that A†† = A′′.
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Theorem 3.2. Let V ⊆ B(H) be an operator space. Then the following are equiv-
alent:

(i) V has a weak expectation.
(ii) IV ††(V ) = I(V ); i.e., these spaces are completely isometrically isomorphic

via a map that fixes V .
(iii) IV ††(V ) is injective, in the usual sense.

Proof. Assuming (ii), since I(V ) is injective we have (iii).
Assuming (iii), we have a projection onto IV ††(V ) ⊆ V ††, and so V has a weak

expectation. Thus, (iii) implies (i).
Finally, assuming (i), we have E ∈ E(V ) with R(E) ⊆ V ††. Let φ : V †† → V †† be

any minimal V -projection, relative to V †† so that φ(V ††) is a copy of IV ††(V ). Since
the seminorm on B(H) generated by E is minimal among all V -seminorms, it is
equal to the seminorm on B(H) generated by φ◦E, and hence, φ◦E ∈ E(V ).Also, φ :
E(B(H)) → (φ ◦E)(B(H)) is a complete isometry, since the two seminorms agree.
By Theorem 2.9, pφ is a minimal V -seminorm on V ††. Hence, by Proposition 2.14,
we have (φ ◦ E)(V ††) = φ(V ††), and so (φ ◦ E)(B(H)) = (φ ◦ E)(V ††) = φ(V ††).
Thus, φ is a complete isometry from a copy of I(V ), namely R(E), onto a copy of
IV ††(V ). �

In the C∗-algebra case we can say a bit more.

Proposition 3.3. Let A ⊆ B(H) be a unital C∗-subalgebra. If A has a weak
expectation, then E(A′′) = R(E) for every E ∈ E(A).

Proof. If A has a weak expectation, then there exists a copy of I(A) inside A′′. Con-
sequently, there exists E0 ∈ E(A) such that R(E0) ⊆ A′′. Since E0 is a projection,
R(E0) = E0(A′′). Now given any E ∈ E(A), we have that R(E) = R(E ◦ E0) =
E(R(E0)) = E(E0(A′′)) ⊆ E(A′′) and so, E(A′′) = R(E). �
Problem 3.4. Let A ⊆ B(H) be a unital C∗-subalgebra. Does there exist E ∈
E(A), such that E(A′′) = R(E) ∩ A′′ is a copy of IA′′(A)?

If the answer to the above problem is affirmative, then the converse of the above
proposition holds.

Let K(H) denote the ideal of compact operators onH. We now turn our attention
to the relationship between compact operators and weak expectations. Hamana [6]
proves that if A ⊆ B(H) is a unital C∗-subalgebra and K(H) ⊂ A, then I(A) =
B(H). The following is a slight generalization and in the C∗-algebra case yields a
different proof. This proof also serves to introduce some of the ideas of the next
section.

Proposition 3.5. Let K(H) ⊆ V ⊆ B(H) be an operator space. Then the identity
map on B(H) is the only V -map and, consequently, I(V ) = B(H).

Proof. Let φ be a V -map. We first show that φ(I) = I, so that φ is a unital complete
contraction and hence completely positive. Given operators, A,B ∈ B(H), we use

(A,B) to denote the operator fromH⊕H toH defined by (A,B)

(
h1

h2

)
= Ah1+Bh2.

To see this claim, note that for any finite rank projection P , since φ is completely
contractive and φ(P ) = P, we have that ‖(P, φ(I) − P )‖ = ‖(φ(P ), φ(I − P ))‖ ≤
‖(P, I−P )‖ = 1. Hence, PP ∗+(φ(I)−P )(φ(I)−P )∗ ≤ I. Subtracting P from both
sides and then multiplying both sides by P yields that 0 ≤ P (φ(I)−P )(φ(I)−P )P ≤
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P (I − P )P = 0. Hence, 0 = P (φ(I)− P ) = P (φ(I)− I). Since this holds for every
finite rank projection, φ(I) = I.

Every positive operator R ∈ B(H) is the strong limit of an increasing net
(sequence in the separable case) of finite rank positive operators, {Fα}. Thus,
we have that Fα = φ(Fα) ≤ φ(R). Taking limits, we have that R ≤ φ(R). Choos-
ing a scalar r such that 0 ≤ rI −R we have that rI −R ≤ φ(rI −R) = rI − φ(R)
and hence R = φ(R). Since every operator is a sum of positive operators the result
follows. �

In the case of C∗-subalgebras, we can say something about the opposite extreme,
K(H) ∩ A = 0.

Proposition 3.6. Let A ⊆ B(H) be a unital C∗-subalgebra and assume that K(H)∩
A = 0. Then for every copy S of I(A), there exists a minimal A-projection E onto
S with E(K(H)) = 0 and hence, S ∩K(H) = (0). However, there can exist minimal
A-projections with E(K(H)) = 0.

Proof. Consider the projection map π of B(H) onto the Calkin algebra, Q(H). Since
this map is a *-isomorphism on A, by rigidity, it must be a complete isometry on
every copy of I(A). Thus, by composition with π one is able to obtain an A-
projection that vanishes on the compacts.

For an example of a minimal A-projection onto a copy of I(A) that does not
vanish on the compacts, consider the case when A consists of the scalar multiples
of the identity operator. Fix a unit vector h ∈ H and set E(T ) = 〈Th, h〉I. �

Problem 3.7. Does it also follow, in this case, that every copy of IA′′(A) and

IA
′′
(A) intersects the compacts trivially?

In the case that A is irreducible, the above result can be improved.

Proposition 3.8. Let A ⊆ B(H) be a unital, irreducible C∗-subalgebra and assume
that K(H) ∩ A = 0. Then φ(K(H)) ⊆ K(H) for every A-map φ.

Proof. Let P and Q be fixed finite rank projections with PQ = 0. By Kadison’s
transitivity theorem [9, Theorem 5.4.5], there exists a unitary U ∈ A such that
U = P −Q on the range of P +Q. Since ‖U‖ = ‖P −Q‖ = 1, the range of P +Q
reduces U .

Let H = Re(U) and write H = H+ − H−. Then H+ ∈ A, H+ ≥ P and on
the range of P +Q, H+ = P . Constructing one such element of A for each Q and
letting Q tend strongly to I − P , we obtain a net of elements HQ ∈ A, such that
HQ ≥ P and converges strongly to P. Since HQ = φ(HQ) ≥ φ(P ), we find that
P ≥ φ(P ) ≥ 0.

Thus φ is rank reducing, and the result follows. �

Proposition 3.9. Let A ⊆ B(H) be a unital, irreducible C∗-subalgebra and assume
that K(H) ∩ A = 0. If E is a minimal A-projection, then E(K(H)) = 0.

Proof. Let S be the range of E and let γ : Q(H) → S be a completely positive map
with γ(π(a)) = a for every a ∈ A. Since pE is a minimal A-seminorm we have that
γ ◦ π ◦ E defines the same seminorm.

However, by the above result, this latter seminorm vanishes on the compact
operators and hence E must also vanish on the compact operators. �
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For the next result, we need to recall the canonical decomposition of a com-
pletely bounded map, φ : B(H) → B(H) into a singular and absolutely continuous
part, φ = φs + φac. This decomposition is achieved by considering the generalized
Stinespring representation, φ(x) = V ∗π(x)W, where π : B(H) → B(H0) is a *-
homomorphism and V,W : H → H0 are bounded linear maps and decomposing the
*-homomorphism into its singular and absolutely continuous parts, π = πs ⊕ πac.
Recall that this latter decomposition is obtained by setting Hac = π(K(H))H0 and
Hs = H0�Hac. When φ is completely positive, it is easy to see that φs and φac are
also completely positive. We will also use the fact that φac is weak*-continuous.

We also remind the reader that a selfadjoint algebra of operators B on a Hilbert
space, H, is said to act non-degenerately if the closed linear span BH is dense in H.

Proposition 3.10. Let A ⊆ B(H) be a unital C∗-subalgebra and let φ be an A-
map. If A ∩ K(H) acts non-degenerately, then φ = φac and, consequently, φ is an
A′′-map.

Proof. Since A∩K(H) is non-degenerate, we can find an increasing net of compact
operators, Ki ∈ A which tend strongly to the identity. Since, φs(Ki) = 0,Ki =
φac(Ki) ≤ φac(I). But since these operators tend to the identity, φac(I) = I, and
hence φs(I) = 0, which implies φs = 0, because it is completely positive.

Finally, since φ = φac is absolutely continuous and fixes A, it must also fix
A′′. �

Lemma 3.11. Let A ⊆ B(H) be a unital C∗-subalgebra. If A ∩ K(H) acts non-
degenerately, then A′′ is injective.

Proof. Let B = A ∩ K(H). By [1, Theorem 1.4.5] and its proof, B is unitarily
equivalent to the direct sum of elementary C∗-algebras where each algebra ap-
pears with certain multiplicities. Thus, after this unitary equivalence we have
that H =

∑
i niHi, where ni indicates the multiplicity with which Hi occurs and

B = {
∑

i ⊕niKi : Ki ∈ K(Hi)}.
Since B = A ∩ K(H), we have that after the unitary equivalence, each A ∈ A

is necessarily of the form A =
∑

i ⊕niAi, with Ai ∈ B(Hi). Hence, B′′ ⊆ A′′ ⊆
{
∑

i niBi : Bi ∈ B(Hi), supi ‖Bi‖ < ∞} = B′′, and it follows that

A′′ = B′′ = {
∑
i

⊕niBi : Bi ∈ B(Hi), sup
i

‖Bi‖ < ∞},

which is clearly injective. �

Theorem 3.12. Let A ⊆ B(H) be a unital C∗-subalgebra. If A ∩ K(H) acts
non-degenerately and E ∈ E(A), then E is weak*-continuous and R(E) = A′′.
Consequently, I(A) = A′′ and A′′ is the unique copy of I(A) contained in B(H).

Proof. By Proposition 3.10, E = Eac so that E is weak*-continuous and also E
fixes A′′ so that A′′ ⊆ R(E). But since A′′ is injective, R(E) ⊆ A′′ for any minimal
A-projection and the result follows. �

Earlier, we saw that if we fix E ∈ E(A), then the set JE is a convex left ideal in
the semigroup of all A-maps. Note that in this case JE is also closed in the point-
weak*-topology. We also have that JE is left invariant under the action of the
smaller convex semigroup Γ of normal A-maps. Consequently, there exist minimal
Γ-invariant subsets of E(A).
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Proposition 3.13. Let A ⊆ B(H) be a unital C∗-subalgebra. Then A has a weak
expectation if and only if there exists a minimal Γ-invariant subset of E(A) that is
a singleton.

Proof. Let {E} be a Γ-invariant subset that is a singleton and let U ∈ A′ be a
unitary. Then U∗E(x)U = E(x) for all x and it follows that the range of E is
contained in A′′.

Conversely, by a theorem of Haagerup [5] (for a published proof, see Smith [12])
every element of Γ has the form φ(x) =

∑
b∗i xbi for some sequence of elements in

A′ satisfying
∑

b∗i bi = 1. If A has a weak expectation, then there is a minimal
A-projection E, whose range is contained in A′′, and E is easily seen to be fixed
by Γ. �

If A has a weak expectation, does every minimal Γ-invariant subset have to be
a singleton?

4. The fixed space

In this section we study the set of elements that are fixed by all V -maps. We
first show that this is a type of reflexive cover of V and then in the case of a C∗-
subalgebra, we show that this set can be identified with a type of order completion.

Definition 4.1. Let V ⊆ W be operator spaces. We set FW (V ) = {T ∈ W :
φ(T ) = T for every V -map, φ : W → W}. When V ⊆ B(H) we shall write F(V ) ≡
FB(H)(V ).

We shall generally be concerned with the case where V = A and W = B are
C∗-algebras, but the case of a pair of operator spaces is equally interesting. The
following is immediate.

Proposition 4.2. Let V ⊆ W ⊆ B(H). Then F(V ) ∩W ⊆ FW (V ).

In general we won’t have equality. To see this note that if A ⊆ S ⊆ B(H), where
S is one of the copies of I(A), then FS(A) = S, since every completely positive
map from S to S that fixes A necessarily fixes all of S, by the rigidity property
of injective envelopes. But there can be other copies of the injective envelope
embedded in B(H) and, by taking a projection onto one of these other copies, we
obtain a completely positive map on B(H) that fixes A but doesn’t fix S.

The following result shows that F(V ) is a sort of reflexive cover of V.

Proposition 4.3. Let V ⊆ B(H) be an operator space. Then F(V ) = {T ∈
B(H) : E(T ) = T for every E ∈ E(V )} =

⋂
S, where the intersection is taken over

all S ∈ CI(V ), i.e., over all copies of I(V ). Consequently, I(V ) = I(F(V )).

Proof. The equality of the last two sets is obvious, as is the fact that the first set
is contained in the second set. Now if E(T ) = T for every E ∈ E(V ) and φ is any
V -map, then φ(T ) = φ(E(T )) = T, since φ ◦ E ∈ E(V ). �

In the case of a C∗-subalgebra we can say a bit more.

Proposition 4.4. Let A ⊆ B(H) be a unital C∗-subalgebra. Then F(A) ⊆
FA′′(A) ⊆ A′′. Moreover, IA′′(A) = IA′′(F(A)).
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Proof. Let P ∈ A′ be a projection and define an A-map by φ(X) = PXP + (I −
P )X(I−P ). If T ∈ F(A), then φ(T ) = T and hence TP = PT . Since T commutes
with every projection in A′, we have that T ∈ A′′. Thus, F(A) ⊆ A′′. Applying
Proposition 4.2, we have that F(A) = F(A) ∩ A′′ ⊆ FA′′(A).

The last statement follows since any unital completely positive map that fixes A
fixes F(A). �

Problem 4.5. Is F(V ) ⊆ V †† for every operator space?

Remark 4.6. Note that by the above results, if A = A′′ ⊆ B(H) is a non-injective
von Neumann subalgebra, thenA = F(A) =

⋂
S and so there are certainly multiple

copies of I(A). Later we will see an example of a non-injective C∗-algebra for which
there is a unique copy of I(A) and I(A) � A′′.

Proposition 4.7. Let A ⊆ B(H) be a unital C∗-subalgebra. If A ∩ K(H) acts
non-degenerately, then F(A) = A′′.

Proof. By Theorem 3.12, A′′ ⊆ F(A). �

Proposition 4.8. Let A ⊆ B(H) be a unital C∗-subalgebra. If A ∩ K(H) = (0),
then F(A) ∩ K(H) = (0).

Proof. Apply Proposition 3.6. �

The next result shows that many of the various notions of multipliers that can
be associated with A are in F(A).

Definition 4.9. Let A ⊆ B(H) be a unital C∗-subalgebra. An operator T ∈ B(H)
is called a local left multiplier of A, provided that there exists a two-sided ideal
J �A of A that acts non-degenerately on H, such that T · J ⊆ A. Similarly, T is
called a local right multiplier of A if there exists such an ideal with J · T ⊆ A,
and a local quasi-multiplier of A, provided that there is such an ideal with
J · T · J ⊆ A. These sets of operators are denoted by LMloc(A),RMloc(A) and
QMloc(A), respectively.

It is fairly easy to check that each of these sets of operators is a vector space and
that LMloc(A) ∪ RMloc(A) ⊆ QMloc(A). Moreover, T ∈ QMloc(A) if and only
if Re(T ), Im(T ) ∈ QMloc(A).

Proposition 4.10. Let A ⊆ B(H) be a unital C∗-subalgebra. Then QMloc(A) ⊆
F(A).

Proof. Let T ∈ QMloc(A) and let J � A be a two-sided ideal that acts non-
degenerately on H, with J · T · J ⊆ A. We wish to show that T ∈ F(A).

Since J acts non-degenerately, there is an increasing, positive, approximate iden-
tity {eα} for J that tends strongly to I. Let φ be any A-map, so that φ is a unital
completely positive map that fixes A.

By Choi’s theory of multiplicative domains [4], φ is an A-bimodule map. Hence,
for each α and β, (eαT − eαφ(T ))eβ = 0. Using that eβ tends strongly to I yields
that eαT = eαφ(T ), for each α. Now using that eα tends strongly to I yields
T = φ(T ). Thus, T ∈ F(A) as was to be shown. �

We now show that F(A) is in a certain sense an order completion of A.
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Definition 4.11. Let T = T ∗ ∈ B(H). Then we set (−∞, T ]A = {A = A∗ ∈
A : A ≤ T} and set [T,+∞)A = {A = A∗ ∈ A : T ≤ A}. For R = R∗,
we write (−∞, T ]A ≤ R provided that A ≤ R for every A ∈ (−∞, T ]A and define
R ≤ [T,+∞)A, similarly. We say that T is order determined by A if (−∞, T ]A ≤
R ≤ [T,+∞)A implies that T = R.

We say that T is matricially order determined by A provided that (−∞, T⊗
H]Mn(A) ≤ R⊗H ≤ [T⊗H,+∞)Mn(A) for every n and everyH = H∗ ∈ Mn implies
that R = T .

Note that the set of order determined elements is a subset of the matricially
order determined elements.

Proposition 4.12. Let A ⊆ B(H) be a unital C∗-subalgebra and let T = T ∗ ∈
B(H). Then T ∈ F(A) if and only if T is matricially order determined by A.

Proof. Let φ be any A-map. It is easily seen that (−∞, T ⊗H]Mn(A) ≤ φ(T )⊗H ≤
[T ⊗H,+∞)Mn(A) for every n and every H = H∗ ∈ Mn. Hence, if T is matricially
order determined, then φ(T ) = T and so T ∈ F(A).

Conversely, assume that T ∈ F(A) and assume that R = R∗ satisfies the in-
equalities in the definition. These inequalities imply that there is a well-defined
completely positive map, φ, satisfying φ(A + λT ) = A + λR from the operator
system spanned by A and T onto the operator system spanned by A and R. This
completely positive map can then be extended to a completely positive map on all
of B(H), and hence R = φ(T ) = T. �

Maitland Wright [13, 14, 15] and Hamana [8] studied several different monotone
completions of a C∗-algebra. In spite of the above characterization of F(A), we have
been unable to develop any relationship between F(A) and those other completions.

Remark 4.13. The set F(A) is not generally a C∗-subalgebra of B(H) as we will
show below.

We now wish to recall another construction of Hamana’s [8]. Given a concrete

operator space, V ⊂ B(H), we have a new operator space V̂ ⊆ B(H⊗ 
2) defined
as follows. Every T ∈ B(H⊗ 
2) has the form T = (Ti,j), with Ti,j ∈ B(H). We set

V̂ = {(Ti,j) ∈ B(H ⊗ 
2) : Ti,j ∈ V }. This is Hamana’s Fubini product of V with
B(
2).

If φ : B(H) → B(H) is completely bounded, then φ̂ : B(H ⊗ 
2) → B(H ⊗ 
2),

defined by φ̂((Ti,j)) = (φ(Ti,j)) is also completely bounded with ‖φ‖cb = ‖φ̂‖cb.
Hence, if V is injective and φ : B(H) → V is a completely contractive projection

onto V , then φ̂ : B(H⊗ 
2) → V̂ is a completely contractive projection onto V̂ and

so V̂ is also injective.
We now wish to define another operator space associated with V . First, let


∞(V ) denote the subset of V̂ consisting of diagonal matrices with entries from V

and let V ⊗K(
2) ⊆ V̂ denote the tensor product of V and the compact operators

on 
2,K(
2). Finally, we let Ṽ = 
∞(V ) + V ⊗K(
2).

Proposition 4.14. Let A ⊆ B(H) be a unital C∗-subalgebra. Then Ã ⊆ B(H⊗
2)
is a C∗-subalgebra. If Ψ : B(H ⊗ 
2) → B(H ⊗ 
2) is a unital, completely positive

map that fixes Ã, then there exists φ : B(H) → B(H) that fixes A such that Ψ = φ̂.
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Proof. Since Ψ fixes the C∗-algebra, C = 
∞(C · I) + (C · I ⊗K(
2)), we have that

Ψ must be a C-bimodule map and, hence, must be of the form Ψ = φ̂ for some map
φ. The result now follows easily. �

Theorem 4.15. Let A ⊆ B(H) be a unital C∗-subalgebra. Then Ψ ∈ E(Ã) if and

only if Ψ = φ̂ for some φ ∈ E(A) and F(Ã) = F̂(A).

Proof. The fact that Ψ = φ̂ for φ ∈ E(A) follows from the above proposition. Note

that in this case, R(Ψ) = R̂(φ), and the result follows from the characterization of
F(·) as the intersection of all ranges. �

Corollary 4.16. Let A ⊆ B(H) be a unital injective C∗-subalgebra. Then Ã ⊆
B(H⊗ 
2) is not injective, and F(Ã) = I(Ã) = Â ⊆ B(H⊗ 
2) is the unique copy
of its injective envelope.

We now wish to show that it is possible to find an abelian, injective C∗-subalge-

bra, A ⊆ B(H), such that Â ⊆ B(H ⊗ 
2) is not a C∗-subalgebra. First, we will
need some preliminary results which might be of independent interest.

Let X be a compact, Hausdorff space. If we identify I(C(X)) = C(Y ) for some
compact, Hausdorff space Y, then the inclusion of C(X) in C(Y ) is induced by a
continuous, onto function, p : Y → X. Assume that {xn} is a countable, dense
subset of X and choose yn ∈ Y such that p(yn) = xn. In the following sequence of
results we assume that this situation holds.

Proposition 4.17. Define π : C(Y ) → 
∞ by π(f) = (f(yn)). Then π is a one-to-
one *-homomorphism and, consequently, {yn} is dense in Y.

Proof. Clearly, π is a *-homomorphism. Define ρ : C(X) → 
∞ by ρ(f) = (f(xn)).
Since {xn} is dense in X, ρ is a one-to-one *-homomorphism. Also, since p(yn) =
xn, π is an extension of ρ to C(Y ), i.e., ρ = π ◦ p∗.

But since C(Y ) is an essential extension of C(X), the fact that ρ is isometric
forces π to be isometric and hence {yn} must be a dense subset of Y . �

The above proof gives one of the easiest proofs of the following result.

Corollary 4.18. Let X and Y be compact, Hausdorff spaces, such that C(Y ) is
C∗-isomorphic to I(C(X)). If X is separable, then Y is separable.

Now let X = [0, 1] and let {xn} be a dense subset as above of distinct points and
for convenience we let x1 = 1. Note that ρ(C([0, 1])) ∩ c0 = (0), for if ρ(f) ∈ c0,
then given any x ∈ [0, 1] we could choose a subsequence {xnk

} with limk xnk
= x

and hence f(x) = limk f(xnk
) = 0.

Thus, if we let ρ̃ : C([0, 1]) → 
∞/c0 denote the composition of ρ with the
quotient map, then ρ̃ is still one-to-one and hence an isometry. Thus, again by the
fact that C(Y ) is an essential extension of C([0, 1]), we have that the composition
of π with the quotient map π̃ : C(Y ) → 
∞/c0 is also an isometry and hence
one-to-one.

Lemma 4.19. There exists an injective, C∗-subalgebra B of 
∞ such that B∩ c0 =
(0),B is weak*-dense in 
∞ and for every n, there exists a strictly positive element,
bn ∈ B such that limm bmn = δn, pointwise, where δn is the function that is 1 at n
and 0 elsewhere.
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Proof. Let B = π(C(Y )), where C(Y ) is the injective envelope of C([0, 1]) as above.
Then B is injective and as shown above, B ∩ c0 = (0).

Next, for each point xn ∈ [0, 1] choose a strictly positive continuous function fn
such that 1 = fn(xn) > fn(x) ≥ 1/2 for any x = xn and let bn = ρ(fn).

The existence of such bn shows that each δn is in the weak*-closure of B and,
hence, B is weak*-dense. �

The key to the next result is that products in B̂ involve strong convergence
of sums while injective C∗-subalgebras need not be closed in the strong operator
topology.

Theorem 4.20. Let B ⊆ 
∞ be the C∗-subalgebra of Lemma 4.19 and assume that


∞ ⊆ B(
2) is represented as the diagonal operators. Then F(B̃) = I(B̃) = B̂ is
not a C∗-subalgebra of B(H⊗ 
2).

Proof. Since B is injective, F(B) = B, and hence, by Theorem 4.15, F(B̃) = F̂(B) =
B̂. Thus, it remains to show that even though B is an injective C∗-subalgebra of

B(
2), B̂ is not a C∗-subalgebra of B(
2 ⊗ 
2), although by the above results it is
an injective operator system.

To this end, let b1 be the element of B that satisfies 1 = b1(1) > b1(n) ≥ 1/2,

for n = 1. Set P1 =
√
b1 and for n > 1, set Pn =

√
bn−1
1 − bn1 . Let A = (Ai,j), B =

(Bi,j) be defined by A1,j = Pj , Ai,j = 0, i = 1 and B1,1 = P1, Bi,1 = −Pi, i = 1,
while Bi,j = 0, j = 1. Then, since

∑
k≥1 P

2
k ≤ 2b1, we have that A and B define

bounded operators and hence are in B̂.
However, A · B = (Ci,j), where Ci,j = 0, unless i = j = 1 and C1,1 = P 2

1 −∑
k≥2 P

2
k = limk→∞ bk1 = δ1 since all convergence is only in the strong operator

topology. However, δ1 /∈ B by construction. Hence, B̂ is not a C∗-subalgebra. �

Note that for the above example, F(B̃) = B̂ = I(B̃). Thus, although F(B̃) is
not a C∗-subalgebra of B(H ⊗ 
2), it is an injective operator system and it is a
C∗-algebra in another product.

Problem 4.21. Is F(A) always completely order isomorphic to a C∗-algebra?

In particular, there is a natural way to identify F(A) completely order iso-
morphically with an operator subsystem of I(A), and we conjecture that it is a
C∗-subalgebra of I(A) with this identification. We make this precise below.

Definition 4.22. Let A be a unital C∗-algebra and let π : A → B(H) be a
*-monomorphism. We let E(π) denote the set of all completely positive maps φ :
I(A) → B(H) that extend π and we set Fπ = {x ∈ I(A) : φ(x) = ψ(x) for all φ, ψ ∈
E(π)}.

Proposition 4.23. Let A be a unital C∗-algebra and let π : A → B(H) be a
*-monomorphism. If φ ∈ E(π), then φ : Fπ → F(π(A)) is a complete order
isomorphism.

Proof. Clearly, E(T ) = T for every E ∈ E(π(A)) if and only if T = φ(x) for a
unique element of Fπ. �

Problem 4.24. Is Fπ ⊆ I(A), always a C∗-subalgebra?
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We close this section by examining the above construction in the abelian case.
Recall that an abelian C∗-algebra is injective if and only if it is an AW*-algebra
[6] and that, in an abelian AW*-algebra, every set of selfadjoint elements with an
upper bound (respectively, lower bound) has a supremum (respectively, infimum).
Also, every abelian W*-algebra is injective. Given any subset S of a C∗-algebra,
we let Sh = {x ∈ S : x = x∗}.

Given an abelian, injective C∗-algebra C and a C∗-subalgebra A, we follow
Hamana’s notation [8] and given x ∈ Ch set

(−∞, x]A = {a ∈ Ah : a ≤ x}
and

[x,+∞)A = {a ∈ Ah : x ≤ a}.
Moreover, we shall set


A(x) = sup(−∞, x]A
and

uA(x) = inf[x,+∞)A.

Theorem 4.25. Let A ⊂ B(H) be a unital abelian C∗-subalgebra with A′ = A′′.
Then F(A)h = FA′′(A)h = {x ∈ A′′

h : 
A(x) = uA(x)}, where 
A(x) and uA(x) are
computed in A′′.

Proof. Let E : B(H) → A′′ be a completely positive projection. Since E fixes A, if
x ∈ F(A), then E(x) = x and so x ∈ A′′. Thus, F(A) = F(A) ∩A′′ ⊆ FA′′(A).

Now, if x ∈ A′′
h and 
A(x) = uA(x), then there exists y ∈ A′′

h such that 
A(x) ≤
y ≤ uA(x) with y = x.

It is easily checked that for any a ∈ A and λ ∈ C, we have that a + λx ≥ 0
implies that a+ λy ≥ 0. Hence, the map φ(a+ λx) = a+ λy is positive and, since
we are in an abelian situation, completely positive. Thus, we may extend φ to a
map ψ : A′′ → A′′. Since ψ fixes A and ψ(x) = y, we have that x /∈ FA′′(A). Thus,
we have shown that F(A)h ⊆ FA′′(A)h ⊆ {x ∈ A′′

h : 
A(x) = uA(x)}.
Now assume that x ∈ A′′

h and 
A(x) = uA(x). If φ : B(H) → B(H) is any
completely positive map such that φ(a) = a∀a ∈ A, then φ(A′) ⊆ A′, since for
y ∈ A′, aφ(y) = φ(ay) = φ(ya) = φ(y)a. Thus, if φ(x) = y, then y ∈ A′′ and hence,

A(x) ≤ y ≤ uA(x) from which it follows that y = x. Hence, {x ∈ A′′

h : 
A(x) =
uA(x)} ⊆ F(A). �

We now apply the above result to several concrete cases. To this end let C([0, 1])
denote the continuous functions on [0,1], let L∞([0, 1]) denote the set of equiv-
alence classes of essentially bounded Lebesgue measurable functions and regard
C([0, 1]) ⊆ L∞([0, 1]) by identifying a continuous function with its equivalence
class. Since L∞([0, 1]) is an injective von Neumann algebra, we have copies of
I(C([0, 1])) embedded completely order isomorphically inside L∞([0, 1]) and corre-
sponding minimal (completely) positive projections onto these copies of the injective
envelope. As before, we will have that the intersection of the ranges of all these
projections is exactly the set of all elements of L∞([0, 1]) that are fixed by every
positive map that fixes C([0, 1]). We let F(C([0, 1])) denote this space.

To understand this example, it helps to notice some facts about sup’s and inf’s
in L∞([0, 1]). Letting [g] ∈ L∞([0, 1]), recall that the set of points x such that

lim
h→0+

1

2h

∫ x+h

x−h

g(t)dm(t)



WEP 4753

exists is independent of the particular choice of function from the equivalence class
of g and is a set of full measure. These points are called the Lebesgue points of g.
We let Eg denote the set of Lebesgue points of g and we let g̃ be the function whose
domain is Eg and which is equal to this limit at each Lebesgue point.

Given [g] ∈ L∞([0, 1])h, we define

gl(t) = sup{f(t) : f ∈ C([0, 1])h, f(x) ≤ g̃(x)∀x ∈ Eg}

and

gu(t) = inf{f(t) : f ∈ C([0, 1])h, g(x) ≤ f(x)∀x ∈ Eg}.
Note that gl is lower semicontinuous, gu is upper semicontinuous and gl(x) ≤

g̃(x) ≤ gu(x), ∀x ∈ Eg. We should also note that these functions are not the usual
upper and lower envelopes of g that one encounters in Riemann integration. The
usual lower and upper envelopes, which we will denote gl and gu, are defined as
above with g in the place of g̃ and the inequalities required to hold at all points.
For example, if g is the characteristic function of the rationals, then gl is constantly
0 while gu is constantly 1, but Eg = [0, 1] and gl(x) = g̃(x) = gu(x) = 0. Note that
for x ∈ Eg, we have that f l(x) ≤ fl(x) ≤ g̃(x) ≤ gu(x) ≤ gu(x).

Proposition 4.26. Let [g] ∈ L∞([0, 1])h. Then in the lattice of L∞([0, 1])h we
have that


C([0,1])([g]) = sup{[f ] : f ∈ C([0, 1])h, [f ] ≤ [g]} = [gl]

and

uC([0,1])([g]) = inf{[f ] : f ∈ C([0, 1])h, [g] ≤ [f ]} = [gu].

Proof. We only prove the first equality. Let [h] denote the supremum. If f ∈
C([0, 1])h and [f ] ≤ [g], then [f ] ≤ [h] and so f ≤ g, a.e. m and f ≤ h, a.e. m.
Hence, f(x) ≤ g̃(x), ∀x ∈ Eg and so f(x) ≤ gl(x), ∀x ∈ Eg. Since this set is full

measure, [f ] ≤ [gl] and so [h] ≤ [gl]. But, we also have that f(x) ≤ h̃(x), ∀x ∈ Eh.

Hence, gl(x) ≤ h̃(x), ∀x ∈ Eh ∩ Eg and so, [gl] ≤ [h], since Eh ∩ Eg is a set of full
measure. �

Note that unlike the case of the continuous functions, it is possible for two
Riemann integrable functions to be equal almost everywhere without being equal.
Thus, the inclusion of the Riemann integrable functions into L∞([0, 1]) is not a
monomorphism. Moreover, if a function is equal almost everywhere to a Riemann
integrable function, it need not be Riemann integrable.

Theorem 4.27. For C([0, 1]) ⊂ L∞([0, 1]), the set FL∞([0,1])(C([0, 1])) is equal
to the set of equivalence classes of Riemann integrable functions. That is, [g] ∈
FL∞([0,1])(C([0, 1])) if and only if f = g, a.e. for some Riemann integrable function
f.

Proof. By the above theorem, we have that [g] ∈ FL∞([0,1])(C([0, 1]))h if and only if
[gl] = [g] = [gu]. Since gl(x) ≤ gu(x), ∀x ∈ [0, 1] and are equal almost everywhere,
these functions are both Riemann integrable. Thus, if [g] ∈ FL∞([0,1])(C([0, 1]))h,
then g = gl a.e. and gl is Riemann integrable.

Conversely, if g = f a.e. are real-valued and f is Riemann integrable, then
f l = fu a.e. and hence from the above inequalities, fl = fu a.e., so that [gl] =
[fl] = [f ] = [g] = [fu] = [gu], which implies that [g] ∈ FL∞([0,1])(C([0, 1])). �
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Corollary 4.28. Let π : C([0, 1]) → B(L2([0, 1])) be the *-monomorphism given
by π(f) = Mf , where Mf denotes the operator of multiplication by f . Then
F(π(C([0, 1]))) = {Mf : f ∈ R([0, 1])}, where R([0, 1]) denotes the set of Riemann
integrable functions and hence is a C∗-algebra.

Proof. We have that π(C([0, 1]))′ = π(C([0, 1]))′′ = {Mf : f ∈ L∞([0, 1])} ≡
L∞([0, 1]) and the result follows.

The last statement follows from the fact that the Riemann integrable functions
are a C∗-algebra and that g → Mg is a *-homomorphism. �

We now consider a discrete case. Let X be a compact, Hausdorff space, let

∞(X) denote the bounded functions on X and let LSC(X) and USC(X) denote
the real-valued lower semicontinuous and upper semicontinuous functions on X,
respectively. Also, let {xi}i∈I be a dense set in X. Recall that a function is
lower semicontinuous (respectively, upper semicontinuous) if and only if it is the
supremum (respectively, infimum) of the continuous real-valued functions that are
less (respectively, greater) than it.

Proposition 4.29. Let π : 
∞(X) → 
∞(I) be defined by π(f)(i) = f(xi). Then

F	∞(I)(π(C(X)))h = π(LSC(X)) ∩ π(USC(X)).

Proof. We have that h ∈ F	∞(I)(π(C(X)))h if and only if h = sup{π(f) : f ∈
C(X)h, π(f) ≤ h} = inf{π(f) : f ∈ C(X)h, h ≤ π(f)}.

Let gl(x) = sup{f(x) : f ∈ C(X)h, π(f) ≤ h} and gu(x) = inf{f(x) : f ∈
C(X)h, π(f) ≤ h}. Then gl is lower semicontinuous and gu is upper semicontinuous
and h = π(gl) = π(gu). Hence, F	∞(I)(π(C(X)))h ⊆ π(LSC(X)) ∩ π(USC(X)).

Conversely, let h ∈ π(LSC(X))∩π(USC(X)), say h = π(gl) = π(gu). Note that
for f ∈ C(X)h, we have that π(f) ≤ h if and only if f ≤ gl. Hence, sup{π(f) :
f ∈ C(X)h, π(f) ≤ h} = sup{π(f) : f ∈ C(X)h, f ≤ gl} = π(gl) = h. Similarly,
h = inf{π(f) : f ∈ C(X)h, h ≤ π(f)} and the result follows. �

Corollary 4.30. Let X be a compact, Hausdorff space, let {xi}i∈I be a dense
set of distinct points in X, let {ei} denote the canonical orthonormal basis for

2(I), and let π : 
∞(X) → B(
2(I)) be the diagonal representation defined by
π(f)ei = f(xi)ei, ∀i. Then F(π(C(X)))h = π(LSC(X)) ∩ π(USC(X)).

Proof. The result follows as above, since π(C(X))′′ = π(C(X))′. �

Consider the case of X = [0, 1], with a dense subset given by an enumer-
ation of the rationals, {rn}n∈N, and π : 
∞([0, 1]) → B(
2(N)), given by the
above formula. If we consider an interval with irrational endpoints, a and b, then
π(χ[a,b]) = π(χ(a,b)) and so this projection belongs to F(π(C([0, 1]))). However, it
can be seen that no finite rank diagonal projection or a projection corresponding
to an interval with a rational endpoint belongs to F(π(C([0, 1]))).
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