The Corona Factorization Property and refinement monoids
HTML articles powered by AMS MathViewer
- by Eduard Ortega, Francesc Perera and Mikael Rørdam
- Trans. Amer. Math. Soc. 363 (2011), 4505-4525
- DOI: https://doi.org/10.1090/S0002-9947-2011-05480-2
- Published electronically: April 19, 2011
- PDF | Request permission
Abstract:
The Corona Factorization Property of a C$^*$-algebra, originally defined to study extensions of C$^*$-algebras, has turned out to say something important about intrinsic structural properties of the C$^*$-algebra. We show in this paper that a $\sigma$-unital C$^*$-algebra $A$ of real rank zero has the Corona Factorization Property if and only if its monoid $\mathrm V(A)$ of Murray-von Neumann equivalence classes of projections in matrix algebras over $A$ has a certain (rather weak) comparability property that we call the Corona Factorization Property (for monoids). We show that a projection in such a C$^*$-algebra is properly infinite if (and only if) a multiple of it is properly infinite.
The latter result is obtained from some more general results that we establish about conical refinement monoids. We show that the set of order units (together with the zero-element) in a conical refinement monoid is again a refinement monoid under the assumption that the monoid satisfies weak divisibility; and if $u$ is an element in a refinement monoid such that $nu$ is properly infinite, then $u$ can be written as a sum $u=s+t$ such that $ns$ and $nt$ are properly infinite.
References
- P. Ara and E. Pardo, Refinement monoids with weak comparability and applications to regular rings and $C^*$-algebras, Proc. Amer. Math. Soc. 124 (1996), no. 3, 715–720. MR 1301484, DOI 10.1090/S0002-9939-96-03059-6
- P. Ara, K. R. Goodearl, K. C. O’Meara, and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105–137. MR 1639739, DOI 10.1007/BF02780325
- G. Aranda Pino, K. R. Goodearl, F. Perera, and M. Siles Molina, Non-simple purely infinite rings, Amer. J. Math. 132 (2010), no. 3, 563–610. MR 2666902, DOI 10.1353/ajm.0.0119
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348. MR 454645
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Hans Dobbertin, Refinement monoids, Vaught monoids, and Boolean algebras, Math. Ann. 265 (1983), no. 4, 473–487. MR 721882, DOI 10.1007/BF01455948
- George A. Elliott and Dan Kucerovsky, An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem, Pacific J. Math. 198 (2001), no. 2, 385–409. MR 1835515, DOI 10.2140/pjm.2001.198.385
- Ilan Hirshberg, Mikael Rørdam, and Wilhelm Winter, $\scr C_0(X)$-algebras, stability and strongly self-absorbing $C^*$-algebras, Math. Ann. 339 (2007), no. 3, 695–732. MR 2336064, DOI 10.1007/s00208-007-0129-8
- Jacob v. B. Hjelmborg and Mikael Rørdam, On stability of $C^*$-algebras, J. Funct. Anal. 155 (1998), no. 1, 153–170. MR 1623142, DOI 10.1006/jfan.1997.3221
- D. Kucerovsky and P. W. Ng, $S$-regularity and the corona factorization property, Math. Scand. 99 (2006), no. 2, 204–216. MR 2289022, DOI 10.7146/math.scand.a-15009
- E. Ortega, F. Perera and M. Rørdam, The Corona Factorization Property, Stability, and the Cuntz semigroup of a $C^*$-algebra. International Mathematics Research Notices (2011); doi: 10.1093/imrn/rnr013
- E. Pardo, Metric completions of ordered groups and $K_0$ of exchange rings, Trans. Amer. Math. Soc. 350 (1998), no. 3, 913–933. MR 1376552, DOI 10.1090/S0002-9947-98-01744-9
- Francesc Perera, The structure of positive elements for $C^*$-algebras with real rank zero, Internat. J. Math. 8 (1997), no. 3, 383–405. MR 1454480, DOI 10.1142/S0129167X97000196
- Francesc Perera and Mikael Rørdam, AF-embeddings into $C^*$-algebras of real rank zero, J. Funct. Anal. 217 (2004), no. 1, 142–170. MR 2097610, DOI 10.1016/j.jfa.2004.05.001
- M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous $C^{\ast }$-extensions of $C(X)\otimes K(H)$. I, J. Operator Theory 1 (1979), no. 1, 55–108. MR 526291
- Mikael Rørdam, Stability of $C^*$-algebras is not a stable property, Doc. Math. 2 (1997), 375–386. MR 1490456
- Mikael Rørdam, A simple $C^*$-algebra with a finite and an infinite projection, Acta Math. 191 (2003), no. 1, 109–142. MR 2020420, DOI 10.1007/BF02392697
- Friedrich Wehrung, Injective positively ordered monoids. I, II, J. Pure Appl. Algebra 83 (1992), no. 1, 43–82, 83–100. MR 1190444, DOI 10.1016/0022-4049(92)90104-N
- Friedrich Wehrung, Embedding simple commutative monoids into simple refinement monoids, Semigroup Forum 56 (1998), no. 1, 104–129. MR 1490558, DOI 10.1007/s00233-002-7008-0
- Shuang Zhang, Matricial structure and homotopy type of simple $C^*$-algebras with real rank zero, J. Operator Theory 26 (1991), no. 2, 283–312. MR 1225518
Bibliographic Information
- Eduard Ortega
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Email: Eduardo.Ortega@math.ntnu.no
- Francesc Perera
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Spain
- MR Author ID: 620835
- Email: perera@mat.uab.cat
- Mikael Rørdam
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitets- parken 5, DK-2100, Copenhagen Ø, Denmark
- Email: rordam@math.ku.dk
- Received by editor(s): April 1, 2009
- Published electronically: April 19, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 4505-4525
- MSC (2000): Primary 46L35, 06F05; Secondary 46L80
- DOI: https://doi.org/10.1090/S0002-9947-2011-05480-2
- MathSciNet review: 2806681